Abstract:Authorship Verification (AV) is the process of analyzing a set of documents to determine whether they were written by a specific author. This problem often arises in forensic scenarios, e.g., in cases where the documents in question constitute evidence for a crime. Existing state-of-the-art AV methods use computational solutions that are not supported by a plausible scientific explanation for their functioning and that are often difficult for analysts to interpret. To address this, we propose a method relying on calculating a quantity we call $\lambda_G$ (LambdaG): the ratio between the likelihood of a document given a model of the Grammar for the candidate author and the likelihood of the same document given a model of the Grammar for a reference population. These Grammar Models are estimated using $n$-gram language models that are trained solely on grammatical features. Despite not needing large amounts of data for training, LambdaG still outperforms other established AV methods with higher computational complexity, including a fine-tuned Siamese Transformer network. Our empirical evaluation based on four baseline methods applied to twelve datasets shows that LambdaG leads to better results in terms of both accuracy and AUC in eleven cases and in all twelve cases if considering only topic-agnostic methods. The algorithm is also highly robust to important variations in the genre of the reference population in many cross-genre comparisons. In addition to these properties, we demonstrate how LambdaG is easier to interpret than the current state-of-the-art. We argue that the advantage of LambdaG over other methods is due to fact that it is compatible with Cognitive Linguistic theories of language processing.
Abstract:This paper measures the stability of cross-linguistic register variation. A register is a variety of a language that is associated with extra-linguistic context. The relationship between a register and its context is functional: the linguistic features that make up a register are motivated by the needs and constraints of the communicative situation. This view hypothesizes that register should be universal, so that we expect a stable relationship between the extra-linguistic context that defines a register and the sets of linguistic features which the register contains. In this paper, the universality and robustness of register variation is tested by comparing variation within vs. between register-specific corpora in 60 languages using corpora produced in comparable communicative situations: tweets and Wikipedia articles. Our findings confirm the prediction that register variation is, in fact, universal.
Abstract:This paper asks whether a distinction between production-based and perception-based grammar induction influences either (i) the growth curve of grammars and lexicons or (ii) the similarity between representations learned from independent sub-sets of a corpus. A production-based model is trained on the usage of a single individual, thus simulating the grammatical knowledge of a single speaker. A perception-based model is trained on an aggregation of many individuals, thus simulating grammatical generalizations learned from exposure to many different speakers. To ensure robustness, the experiments are replicated across two registers of written English, with four additional registers reserved as a control. A set of three computational experiments shows that production-based grammars are significantly different from perception-based grammars across all conditions, with a steeper growth curve that can be explained by substantial inter-individual grammatical differences.