Abstract:Curriculum Learning for Reinforcement Learning is an increasingly popular technique that involves training an agent on a defined sequence of intermediate tasks, called a Curriculum, to increase the agent's performance and learning speed. This paper introduces a novel paradigm for automatic curriculum generation based on a progression of task complexity. Different progression functions are introduced, including an autonomous online task progression based on the performance of the agent. The progression function also determines how long the agent should train on each intermediate task, which is an open problem in other task-based curriculum approaches. The benefits and wide applicability of our approach are shown by empirically comparing its performance to two state-of-the-art Curriculum Learning algorithms on a grid world and on a complex simulated navigation domain.