Abstract:Finance-related news such as Bloomberg News, CNN Business and Forbes are valuable sources of real data for market screening systems. In news, an expert shares opinions beyond plain technical analyses that include context such as political, sociological and cultural factors. In the same text, the expert often discusses the performance of different assets. Some key statements are mere descriptions of past events while others are predictions. Therefore, understanding the temporality of the key statements in a text is essential to separate context information from valuable predictions. We propose a novel system to detect the temporality of finance-related news at discourse level that combines Natural Language Processing and Machine Learning techniques, and exploits sophisticated features such as syntactic and semantic dependencies. More specifically, we seek to extract the dominant tenses of the main statements, which may be either explicit or implicit. We have tested our system on a labelled dataset of finance-related news annotated by researchers with knowledge in the field. Experimental results reveal a high detection precision compared to an alternative rule-based baseline approach. Ultimately, this research contributes to the state-of-the-art of market screening by identifying predictive knowledge for financial decision making.
Abstract:Financial news items are unstructured sources of information that can be mined to extract knowledge for market screening applications. Manual extraction of relevant information from the continuous stream of finance-related news is cumbersome and beyond the skills of many investors, who, at most, can follow a few sources and authors. Accordingly, we focus on the analysis of financial news to identify relevant text and, within that text, forecasts and predictions. We propose a novel Natural Language Processing (NLP) system to assist investors in the detection of relevant financial events in unstructured textual sources by considering both relevance and temporality at the discursive level. Firstly, we segment the text to group together closely related text. Secondly, we apply co-reference resolution to discover internal dependencies within segments. Finally, we perform relevant topic modelling with Latent Dirichlet Allocation (LDA) to separate relevant from less relevant text and then analyse the relevant text using a Machine Learning-oriented temporal approach to identify predictions and speculative statements. We created an experimental data set composed of 2,158 financial news items that were manually labelled by NLP researchers to evaluate our solution. The ROUGE-L values for the identification of relevant text and predictions/forecasts were 0.662 and 0.982, respectively. To our knowledge, this is the first work to jointly consider relevance and temporality at the discursive level. It contributes to the transfer of human associative discourse capabilities to expert systems through the combination of multi-paragraph topic segmentation and co-reference resolution to separate author expression patterns, topic modelling with LDA to detect relevant text, and discursive temporality analysis to identify forecasts and predictions within this text.
Abstract:Microblogging platforms, of which Twitter is a representative example, are valuable information sources for market screening and financial models. In them, users voluntarily provide relevant information, including educated knowledge on investments, reacting to the state of the stock markets in real-time and, often, influencing this state. We are interested in the user forecasts in financial, social media messages expressing opportunities and precautions about assets. We propose a novel Targeted Aspect-Based Emotion Analysis (TABEA) system that can individually discern the financial emotions (positive and negative forecasts) on the different stock market assets in the same tweet (instead of making an overall guess about that whole tweet). It is based on Natural Language Processing (NLP) techniques and Machine Learning streaming algorithms. The system comprises a constituency parsing module for parsing the tweets and splitting them into simpler declarative clauses; an offline data processing module to engineer textual, numerical and categorical features and analyse and select them based on their relevance; and a stream classification module to continuously process tweets on-the-fly. Experimental results on a labelled data set endorse our solution. It achieves over 90% precision for the target emotions, financial opportunity, and precaution on Twitter. To the best of our knowledge, no prior work in the literature has addressed this problem despite its practical interest in decision-making, and we are not aware of any previous NLP nor online Machine Learning approaches to TABEA.