Abstract:Cognitive and neurological impairments are very common, but only a small proportion of affected individuals are diagnosed and treated, partly because of the high costs associated with frequent screening. Detecting pre-illness stages and analyzing the progression of neurological disorders through effective and efficient intelligent systems can be beneficial for timely diagnosis and early intervention. We propose using Large Language Models to extract features from free dialogues to detect cognitive decline. These features comprise high-level reasoning content-independent features (such as comprehension, decreased awareness, increased distraction, and memory problems). Our solution comprises (i) preprocessing, (ii) feature engineering via Natural Language Processing techniques and prompt engineering, (iii) feature analysis and selection to optimize performance, and (iv) classification, supported by automatic explainability. We also explore how to improve Chatgpt's direct cognitive impairment prediction capabilities using the best features in our models. Evaluation metrics obtained endorse the effectiveness of a mixed approach combining feature extraction with Chatgpt and a specialized Machine Learning model to detect cognitive decline within free-form conversational dialogues with older adults. Ultimately, our work may facilitate the development of an inexpensive, non-invasive, and rapid means of detecting and explaining cognitive decline.
Abstract:Based on official estimates, 50 million people worldwide are affected by dementia, and this number increases by 10 million new patients every year. Without a cure, clinical prognostication and early intervention represent the most effective ways to delay its progression. To this end, Artificial Intelligence and computational linguistics can be exploited for natural language analysis, personalized assessment, monitoring, and treatment. However, traditional approaches need more semantic knowledge management and explicability capabilities. Moreover, using Large Language Models (LLMs) for cognitive decline diagnosis is still scarce, even though these models represent the most advanced way for clinical-patient communication using intelligent systems. Consequently, we leverage an LLM using the latest Natural Language Processing (NLP) techniques in a chatbot solution to provide interpretable Machine Learning prediction of cognitive decline in real-time. Linguistic-conceptual features are exploited for appropriate natural language analysis. Through explainability, we aim to fight potential biases of the models and improve their potential to help clinical workers in their diagnosis decisions. More in detail, the proposed pipeline is composed of (i) data extraction employing NLP-based prompt engineering; (ii) stream-based data processing including feature engineering, analysis, and selection; (iii) real-time classification; and (iv) the explainability dashboard to provide visual and natural language descriptions of the prediction outcome. Classification results exceed 80 % in all evaluation metrics, with a recall value for the mental deterioration class about 85 %. To sum up, we contribute with an affordable, flexible, non-invasive, personalized diagnostic system to this work.
Abstract:In recent years, the field of Natural Language Generation (NLG) has been boosted by the recent advances in deep learning technologies. Nonetheless, these new data-intensive methods introduce language-dependent disparities in NLG as the main training data sets are in English. Also, most neural NLG systems use decoder-only (causal) transformer language models, which work well for English, but were not designed with other languages in mind. In this work we depart from the hypothesis that they may introduce generation bias in target languages with less rigid word ordering, subject omission, or different attachment preferences for relative clauses, so that for these target languages other language generation strategies may be more desirable. This paper first compares causal and non-causal language modeling for English and Spanish, two languages with different grammatical structures and over 1.5 billion and 0.5 billion speakers, respectively. For this purpose, we define a novel metric of average causal and non-causal context-conditioned entropy of the grammatical category distribution for both languages as an information-theoretic a priori approach. The evaluation of natural text sources (such as training data) in both languages reveals lower average non-causal conditional entropy in Spanish and lower causal conditional entropy in English. According to this experiment, Spanish is more predictable than English given a non-causal context. Then, by applying a conditional relative entropy metric to text generation experiments, we obtain as insights that the best performance is respectively achieved with causal NLG in English, and with non-causal NLG in Spanish. These insights support further research in NLG in Spanish using bidirectional transformer language models.
Abstract:Spam reviews are a pervasive problem on online platforms due to its significant impact on reputation. However, research into spam detection in data streams is scarce. Another concern lies in their need for transparency. Consequently, this paper addresses those problems by proposing an online solution for identifying and explaining spam reviews, incorporating data drift adaptation. It integrates (i) incremental profiling, (ii) data drift detection & adaptation, and (iii) identification of spam reviews employing Machine Learning. The explainable mechanism displays a visual and textual prediction explanation in a dashboard. The best results obtained reached up to 87 % spam F-measure.
Abstract:Material extrusion is one of the most commonly used approaches within the additive manufacturing processes available. Despite its popularity and related technical advancements, process reliability and quality assurance remain only partially solved. In particular, the surface roughness caused by this process is a key concern. To solve this constraint, experimental plans have been exploited to optimize surface roughness in recent years. However, the latter empirical trial and error process is extremely time- and resource-consuming. Thus, this study aims to avoid using large experimental programs to optimize surface roughness in material extrusion. Methodology. This research provides an in-depth analysis of the effect of several printing parameters: layer height, printing temperature, printing speed and wall thickness. The proposed data-driven predictive modeling approach takes advantage of Machine Learning models to automatically predict surface roughness based on the data gathered from the literature and the experimental data generated for testing. Findings. Using 10-fold cross-validation of data gathered from the literature, the proposed Machine Learning solution attains a 0.93 correlation with a mean absolute percentage error of 13 %. When testing with our own data, the correlation diminishes to 0.79 and the mean absolute percentage error reduces to 8 %. Thus, the solution for predicting surface roughness in extrusion-based printing offers competitive results regarding the variability of the analyzed factors. Originality. As available manufacturing data continue to increase on a daily basis, the ability to learn from these large volumes of data is critical in future manufacturing and science. Specifically, the power of Machine Learning helps model surface roughness with limited experimental tests.
Abstract:Artificial Intelligence (AI) can potentially transform the industry, enhancing the production process and minimizing manual, repetitive tasks. Accordingly, the synergy between high-performance computing and powerful mathematical models enables the application of sophisticated data analysis procedures like Machine Learning. However, challenges exist regarding effective, efficient, and flexible processing to generate valuable knowledge. Consequently, this work comprehensively describes industrial challenges where AI can be exploited, focusing on the dairy industry. The conclusions presented can help researchers apply novel approaches for cattle monitoring and farmers by proposing advanced technological solutions to their needs.
Abstract:Artificial Intelligence (AI) can potentially transform the industry, enhancing the production process and minimizing manual, repetitive tasks. Accordingly, the synergy between high-performance computing and powerful mathematical models enables the application of sophisticated data analysis procedures like Machine Learning. However, challenges exist regarding effective, efficient, and flexible processing to generate valuable knowledge. Consequently, this work comprehensively describes industrial challenges where AI can be exploited, focusing on the dairy industry. The conclusions presented can help researchers apply novel approaches for cattle monitoring and farmers by proposing advanced technological solutions to their needs.
Abstract:Artificial Intelligence (AI) has found application in Human Activity Recognition (HAR) in competitive sports. To date, most Machine Learning (ML) approaches for HAR have relied on offline (batch) training, imposing higher computational and tagging burdens compared to online processing unsupervised approaches. Additionally, the decisions behind traditional ML predictors are opaque and require human interpretation. In this work, we apply an online processing unsupervised clustering approach based on low-cost wearable Inertial Measurement Units (IMUs). The outcomes generated by the system allow for the automatic expansion of limited tagging available (e.g., by referees) within those clusters, producing pertinent information for the explainable classification stage. Specifically, our work focuses on achieving automatic explainability for predictions related to athletes' activities, distinguishing between correct, incorrect, and cheating practices in Nordic Walking. The proposed solution achieved performance metrics of close to 100 % on average.
Abstract:New technologies such as Machine Learning (ML) gave great potential for evaluating industry workflows and automatically generating key performance indicators (KPIs). However, despite established standards for measuring the efficiency of industrial machinery, there is no precise equivalent for workers' productivity, which would be highly desirable given the lack of a skilled workforce for the next generation of industry workflows. Therefore, an ML solution combining data from manufacturing processes and workers' performance for that goal is required. Additionally, in recent times intense effort has been devoted to explainable ML approaches that can automatically explain their decisions to a human operator, thus increasing their trustworthiness. We propose to apply explainable ML solutions to differentiate between expert and inexpert workers in industrial workflows, which we validate at a quality assessment industrial workstation. Regarding the methodology used, input data are captured by a manufacturing machine and stored in a NoSQL database. Data are processed to engineer features used in automatic classification and to compute workers' KPIs to predict their level of expertise (with all classification metrics exceeding 90 %). These KPIs, and the relevant features in the decisions are textually explained by natural language expansion on an explainability dashboard. These automatic explanations made it possible to infer knowledge from expert workers for inexpert workers. The latter illustrates the interest of research in self-explainable ML for automatically generating insights to improve productivity in industrial workflows.
Abstract:Social media include diverse interaction metrics related to user popularity, the most evident example being the number of user followers. The latter has raised concerns about the credibility of the posts by the most popular creators. However, most existing approaches to assess credibility in social media strictly consider this problem a binary classification, often based on a priori information, without checking if actual real-world facts back the users' comments. In addition, they do not provide automatic explanations of their predictions to foster their trustworthiness. In this work, we propose a credibility assessment solution for financial creators in social media that combines Natural Language Processing and Machine Learning. The reputation of the contributors is assessed by automatically classifying their forecasts on asset values by type and verifying these predictions with actual market data to approximate their probability of success. The outcome of this verification is a continuous credibility score instead of a binary result, an entirely novel contribution by this work. Moreover, social media metrics (i.e., user context) are exploited by calculating their correlation with the credibility rankings, providing insights on the interest of the end-users in financial posts and their forecasts (i.e., drop or rise). Finally, the system provides natural language explanations of its decisions based on a model-agnostic analysis of relevant features.