Abstract:Deep learning models for medical image classification tasks are becoming widely implemented in AI-assisted diagnostic tools, aiming to enhance diagnostic accuracy, reduce clinician workloads, and improve patient outcomes. However, their vulnerability to adversarial attacks poses significant risks to patient safety. Current attack methodologies use general techniques such as model querying or pixel value perturbations to generate adversarial examples designed to fool a model. These approaches may not adequately address the unique characteristics of clinical errors stemming from missed or incorrectly identified clinical features. We propose the Concept-based Report Perturbation Attack (CoRPA), a clinically-focused black-box adversarial attack framework tailored to the medical imaging domain. CoRPA leverages clinical concepts to generate adversarial radiological reports and images that closely mirror realistic clinical misdiagnosis scenarios. We demonstrate the utility of CoRPA using the MIMIC-CXR-JPG dataset of chest X-rays and radiological reports. Our evaluation reveals that deep learning models exhibiting strong resilience to conventional adversarial attacks are significantly less robust when subjected to CoRPA's clinically-focused perturbations. This underscores the importance of addressing domain-specific vulnerabilities in medical AI systems. By introducing a specialized adversarial attack framework, this study provides a foundation for developing robust, real-world-ready AI models in healthcare, ensuring their safe and reliable deployment in high-stakes clinical environments.
Abstract:The rapidly advancing field of Explainable Artificial Intelligence (XAI) aims to tackle the issue of trust regarding the use of complex black-box deep learning models in real-world applications. Existing post-hoc XAI techniques have recently been shown to have poor performance on medical data, producing unreliable explanations which are infeasible for clinical use. To address this, we propose an ante-hoc approach based on concept bottleneck models which introduces for the first time clinical concepts into the classification pipeline, allowing the user valuable insight into the decision-making process. On a large public dataset of chest X-rays and associated medical reports, we focus on the binary classification task of lung cancer detection. Our approach yields improved classification performance in lung cancer detection when compared to baseline deep learning models (F1 > 0.9), while also generating clinically relevant and more reliable explanations than existing techniques. We evaluate our approach against post-hoc image XAI techniques LIME and SHAP, as well as CXR-LLaVA, a recent textual XAI tool which operates in the context of question answering on chest X-rays.
Abstract:The Stereotype Content model (SCM) states that we tend to perceive minority groups as cold, incompetent or both. In this paper we adapt existing work to demonstrate that the Stereotype Content model holds for contextualised word embeddings, then use these results to evaluate a fine-tuning process designed to drive a language model away from stereotyped portrayals of minority groups. We find the SCM terms are better able to capture bias than demographic agnostic terms related to pleasantness. Further, we were able to reduce the presence of stereotypes in the model through a simple fine-tuning procedure that required minimal human and computer resources, without harming downstream performance. We present this work as a prototype of a debiasing procedure that aims to remove the need for a priori knowledge of the specifics of bias in the model.