Abstract:Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applications, such as target tracking or sleep scheduling in sensor networks, continuous-valued variables are more suitable than discrete ones. To better model such applications, researchers have proposed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs experience either onerous memory or computation overhead and unsuitable for non-differentiable optimization problems. To address this issue, we propose a new C-DCOP algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired by Particle Swarm Optimization (PSO), a well-known centralized population-based approach for solving continuous optimization problems. In recent years, population-based algorithms have gained significant attention in classical DCOPs due to their ability in producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation, we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner. The resulting PCD algorithm not only produces good-quality solutions but also finds solutions without any requirement for derivative calculations. Moreover, we design a crossover operator that can be used by PCD to further improve the quality of solutions found. Finally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.
Abstract:Distributed Constraint Optimization Problems (DCOPs) have been widely used to coordinate interactions (i.e. constraints) in cooperative multi-agent systems. The traditional DCOP model assumes that variables owned by the agents can take only discrete values and constraints' cost functions are defined for every possible value assignment of a set of variables. While this formulation is often reasonable, there are many applications where the variables are continuous decision variables and constraints are in functional form. To overcome this limitation, Functional DCOP (F-DCOP) model is proposed that is able to model problems with continuous variables. The existing F-DCOPs algorithms experience huge computation and communication overhead. This paper applies continuous non-linear optimization methods on Cooperative Constraint Approximation (CoCoA) algorithm. We empirically show that our algorithm is able to provide high-quality solutions at the expense of smaller communication cost and execution time compared to the existing F-DCOP algorithms.