Abstract:Recent rising interests in patient-specific thoracic surgical planning and simulation require efficient and robust creation of digital anatomical models from automatic medical image segmentation algorithms. Deep learning (DL) is now state-of-the-art in various radiological tasks, and U-shaped DL models have particularly excelled in medical image segmentation since the inception of the 2D UNet. To date, many variants of U-shaped models have been proposed by the integration of different attention mechanisms and network configurations. Leveraging the recent development of large multi-label databases, systematic benchmark studies for these models can provide valuable insights for clinical deployment and future model designs, but such studies are still rare. We conduct the first benchmark study for variants of 3D U-shaped models (3DUNet, STUNet, AttentionUNet, SwinUNETR, FocalSegNet, and a novel 3D SwinUnet with four variants) with a focus on CT-based anatomical segmentation for thoracic surgery. Our study systematically examines the impact of different attention mechanisms, number of resolution stages, and network configurations on segmentation accuracy and computational complexity. To allow cross-reference with other recent benchmarking studies, we also included a performance assessment of the BTCV abdominal structural segmentation. With the STUNet ranking at the top, our study demonstrated the value of CNN-based U-shaped models for the investigated tasks and the benefit of residual blocks in network configuration designs to boost segmentation performance.
Abstract:Early surgical treatment of brain tumors is crucial in reducing patient mortality rates. However, brain tissue deformation (called brain shift) occurs during the surgery, rendering pre-operative images invalid. As a cost-effective and portable tool, intra-operative ultrasound (iUS) can track brain shift, and accurate MRI-iUS registration techniques can update pre-surgical plans and facilitate the interpretation of iUS. This can boost surgical safety and outcomes by maximizing tumor removal while avoiding eloquent regions. However, manual assessment of MRI-iUS registration results in real-time is difficult and prone to errors due to the 3D nature of the data. Automatic algorithms that can quantify the quality of inter-modal medical image registration outcomes can be highly beneficial. Therefore, we propose a novel deep-learning (DL) based framework with the Swin UNETR to automatically assess 3D-patch-wise dense error maps for MRI-iUS registration in iUS-guided brain tumor resection and show its performance with real clinical data for the first time.
Abstract:Accurate identification and quantification of unruptured intracranial aneurysms (UIAs) are essential for the risk assessment and treatment decisions of this cerebrovascular disorder. Current assessment based on 2D manual measures of aneurysms on 3D magnetic resonance angiography (MRA) is sub-optimal and time-consuming. Automatic 3D measures can significantly benefit the clinical workflow and treatment outcomes. However, one major issue in medical image segmentation is the need for large well-annotated data, which can be expensive to obtain. Techniques that mitigate the requirement, such as weakly supervised learning with coarse labels are highly desirable. In this paper, we leverage coarse labels of UIAs from time-of-flight MRAs to obtain refined UIAs segmentation using a novel 3D focal modulation UNet, called FocalSegNet and conditional random field (CRF) postprocessing, with a Dice score of 0.68 and 95% Hausdorff distance of 0.95 mm. We evaluated the performance of the proposed algorithms against the state-of-the-art 3D UNet and Swin-UNETR, and demonstrated the superiority of the proposed FocalSegNet and the benefit of focal modulation for the task.
Abstract:Homologous anatomical landmarks between medical scans are instrumental in quantitative assessment of image registration quality in various clinical applications, such as MRI-ultrasound registration for tissue shift correction in ultrasound-guided brain tumor resection. While manually identified landmark pairs between MRI and ultrasound (US) have greatly facilitated the validation of different registration algorithms for the task, the procedure requires significant expertise, labor, and time, and can be prone to inter- and intra-rater inconsistency. So far, many traditional and machine learning approaches have been presented for anatomical landmark detection, but they primarily focus on mono-modal applications. Unfortunately, despite the clinical needs, inter-modal/contrast landmark detection has very rarely been attempted. Therefore, we propose a novel contrastive learning framework to detect corresponding landmarks between MRI and intra-operative US scans in neurosurgery. Specifically, two convolutional neural networks were trained jointly to encode image features in MRI and US scans to help match the US image patch that contain the corresponding landmarks in the MRI. We developed and validated the technique using the public RESECT database. With a mean landmark detection accuracy of 5.88+-4.79 mm against 18.78+-4.77 mm with SIFT features, the proposed method offers promising results for MRI-US landmark detection in neurosurgical applications for the first time.
Abstract:In brain tumor resection, accurate removal of cancerous tissues while preserving eloquent regions is crucial to the safety and outcomes of the treatment. However, intra-operative tissue deformation (called brain shift) can move the surgical target and render the pre-surgical plan invalid. Intra-operative ultrasound (iUS) has been adopted to provide real-time images to track brain shift, and inter-modal (i.e., MRI-iUS) registration is often required to update the pre-surgical plan. Quality control for the registration results during surgery is important to avoid adverse outcomes, but manual verification faces great challenges due to difficult 3D visualization and the low contrast of iUS. Automatic algorithms are urgently needed to address this issue, but the problem was rarely attempted. Therefore, we propose a novel deep learning technique based on 3D focal modulation in conjunction with uncertainty estimation to accurately assess MRI-iUS registration errors for brain tumor surgery. Developed and validated with the public RESECT clinical database, the resulting algorithm can achieve an estimation error of 0.59+-0.57 mm.
Abstract:Intracranial hemorrhage (ICH) is a life-threatening medical emergency caused by various factors. Timely and precise diagnosis of ICH is crucial for administering effective treatment and improving patient survival rates. While deep learning techniques have emerged as the leading approach for medical image analysis and processing, the most commonly employed supervised learning often requires large, high-quality annotated datasets that can be costly to obtain, particularly for pixel/voxel-wise image segmentation. To address this challenge and facilitate ICH treatment decisions, we proposed a novel weakly supervised ICH segmentation method that leverages a hierarchical combination of head-wise gradient-infused self-attention maps obtained from a Swin transformer. The transformer is trained using an ICH classification task with categorical labels. To build and validate the proposed technique, we used two publicly available clinical CT datasets, namely RSNA 2019 Brain CT hemorrhage and PhysioNet. Additionally, we conducted an exploratory study comparing two learning strategies - binary classification and full ICH subtyping - to assess their impact on self-attention and our weakly supervised ICH segmentation framework. The proposed algorithm was compared against the popular U-Net with full supervision, as well as a similar weakly supervised approach using Grad-CAM for ICH segmentation. With a mean Dice score of 0.47, our technique achieved similar ICH segmentation performance as the U-Net and outperformed the Grad-CAM based approach, demonstrating the excellent potential of the proposed framework in challenging medical image segmentation tasks.