Abstract:Diversification in a set of solutions has become a hot research topic in the evolutionary computation community. It has been proven beneficial for optimisation problems in several ways, such as computing a diverse set of high-quality solutions and obtaining robustness against imperfect modeling. For the first time in the literature, we adapt the evolutionary diversity optimisation for a real-world combinatorial problem, namely patient admission scheduling. We introduce an evolutionary algorithm to achieve structural diversity in a set of solutions subjected to the quality of each solution. We also introduce a mutation operator biased towards diversity maximisation. Finally, we demonstrate the importance of diversity for the aforementioned problem through a simulation.
Abstract:There are found a vast number of papers studying the problem of operating theater planning and scheduling. Different variants of this problem are generally recognized to be NP-complete; thus, several solution approaches have been utilized in the literature to confront with these complicated problems. The lack of a thorough review of the main characteristics of solution approaches is tangible in the literature (reviewing them separately and with regards to the characteristics of studied problems), which can provide pragmatic guidelines for practitioners and future research projects. This paper aims to address this issue. Since different types of solution approaches usually have different characteristics, this paper focuses only on metaheuristic algorithms. Through both automatic and manual search methods, we have selected and reviewed 28 papers with respect to their main problem and solution approach features. Finally, some directions are introduced for future research.