Abstract:The spread of fake news using out-of-context images has become widespread and is a challenging task in this era of information overload. Since annotating huge amounts of such data requires significant time of domain experts, it is imperative to develop methods which can work in limited annotated data scenarios. In this work, we explore whether out-of-domain data can help to improve out-of-context misinformation detection (termed here as multi-modal fake news detection) of a desired domain, eg. politics, healthcare, etc. Towards this goal, we propose a novel framework termed DPOD (Domain-specific Prompt-tuning using Out-of-Domain data). First, to compute generalizable features, we modify the Vision-Language Model, CLIP to extract features that helps to align the representations of the images and corresponding text captions of both the in-domain and out-of-domain data in a label-aware manner. Further, we propose a domain-specific prompt learning technique which leverages the training samples of all the available domains based on the the extent they can be useful to the desired domain. Extensive experiments on a large-scale benchmark dataset, namely NewsClippings demonstrate that the proposed framework achieves state of-the-art performance, significantly surpassing the existing approaches for this challenging task.
Abstract:White blood cells, also known as leukocytes are group of heterogeneously nucleated cells which act as salient immune system cells. These are originated in the bone marrow and are found in blood, plasma, and lymph tissues. Leukocytes kill the bacteria, virus and other kind of pathogens which invade human body through phagocytosis that in turn results immunity. Detection of a white blood cell count can reveal camouflaged infections and warn doctors about chronic medical conditions such as autoimmune diseases, immune deficiencies, and blood disorders. Segmentation plays an important role in identification of white blood cells (WBC) from microscopic image analysis. The goal of segmentation in a microscopic image is to divide the image into different distinct regions. In our paper, we tried to propose a novel instance segmentation method for segmenting the WBCs containing both the nucleus and the cytoplasm, from bone marrow images.
Abstract:While developing artificial intelligence (AI)-based algorithms to solve problems, the amount of data plays a pivotal role - large amount of data helps the researchers and engineers to develop robust AI algorithms. In the case of building AI-based models for problems related to medical imaging, these data need to be transferred from the medical institutions where they were acquired to the organizations developing the algorithms. This movement of data involves time-consuming formalities like complying with HIPAA, GDPR, etc.There is also a risk of patients' private data getting leaked, compromising their confidentiality. One solution to these problems is using the Federated Learning framework. Federated Learning (FL) helps AI models to generalize better and create a robust AI model by using data from different sources having different distributions and data characteristics without moving all the data to a central server. In our paper, we apply the FL framework for training a deep learning model to solve a binary classification problem of predicting the presence or absence of COVID-19. We took three different sources of data and trained individual models on each source. Then we trained an FL model on the complete data and compared all the model performances. We demonstrated that the FL model performs better than the individual models. Moreover, the FL model performed at par with the model trained on all the data combined at a central server. Thus Federated Learning leads to generalized AI models without the cost of data transfer and regulatory overhead.