Abstract:Temporal information extraction plays a critical role in natural language understanding. Previous systems have incorporated advanced neural language models and have successfully enhanced the accuracy of temporal information extraction tasks. However, these systems have two major shortcomings. First, they fail to make use of the two-sided nature of temporal relations in prediction. Second, they involve non-parallelizable pipelines in inference process that bring little performance gain. To this end, we propose a novel temporal information extraction model based on deep biaffine attention to extract temporal relationships between events in unstructured text efficiently and accurately. Our model is performant because we perform relation extraction tasks directly instead of considering event annotation as a prerequisite of relation extraction. Moreover, our architecture uses Multilayer Perceptrons (MLP) with biaffine attention to predict arcs and relation labels separately, improving relation detecting accuracy by exploiting the two-sided nature of temporal relationships. We experimentally demonstrate that our model achieves state-of-the-art performance in temporal relation extraction.
Abstract:Knowledge analysis is an important application of knowledge graphs. In this paper, we present a complex knowledge analysis problem that discovers the gaps in the technology areas of interest to an organization. Our knowledge graph is developed on a heterogeneous data management platform. The analysis combines semantic search, graph analytics, and polystore query optimization.
Abstract:Hashtag annotation for microblog posts has been recently formulated as a sequence generation problem to handle emerging hashtags that are unseen in the training set. The state-of-the-art method leverages conversations initiated by posts to enrich contextual information for the short posts. However, it is unrealistic to assume the existence of conversations before the hashtag annotation itself. Therefore, we propose to leverage news articles published before the microblog post to generate hashtags following a Retriever-Generator framework. Extensive experiments on English Twitter datasets demonstrate superior performance and significant advantages of leveraging news articles to generate hashtags.
Abstract:Many data science applications like social network analysis use graphs as their primary form of data. However, acquiring graph-structured data from social media presents some interesting challenges. The first challenge is the high data velocity and bursty nature of the social media data. The second challenge is that the complex nature of the data makes the ingestion process expensive. If we want to store the streaming graph data in a graph database, we face a third challenge -- the database is very often unable to sustain the ingestion of high-velocity, high-burst data. We have developed an adaptive buffering mechanism and a graph compression technique that effectively mitigates the problem. A novel aspect of our method is that the adaptive buffering algorithm uses the data rate, the data content as well as the CPU resources of the database machine to determine an optimal data ingestion mechanism. We further show that an ingestion-time graph-compression strategy improves the efficiency of the data ingestion into the database. We have verified the efficacy of our ingestion optimization strategy through extensive experiments.