Abstract:An important question in elections is the determine whether a candidate can be a winner when some votes are absent. We study this determining winner with the absent votes (WAV) problem when the votes are top-truncated. We show that the WAV problem is NP-complete for the single transferable vote, Maximin, and Copeland, and propose a special case of positional scoring rule such that the problem can be computed in polynomial time. Our results in top-truncated rankings differ from the results in full rankings as their hardness results still hold when the number of candidates or the number of missing votes are bounded, while we show that the problem can be solved in polynomial time in either case.
Abstract:Ranking functions that are used in decision systems often produce disparate results for different populations because of bias in the underlying data. Addressing, and compensating for, these disparate outcomes is a critical problem for fair decision-making. Recent compensatory measures have mostly focused on opaque transformations of the ranking functions to satisfy fairness guarantees or on the use of quotas or set-asides to guarantee a minimum number of positive outcomes to members of underrepresented groups. In this paper we propose easily explainable data-driven compensatory measures for ranking functions. Our measures rely on the generation of bonus points given to members of underrepresented groups to address disparity in the ranking function. The bonus points can be set in advance, and can be combined, allowing for considering the intersections of representations and giving better transparency to stakeholders. We propose efficient sampling-based algorithms to calculate the number of bonus points to minimize disparity. We validate our algorithms using real-world school admissions and recidivism datasets, and compare our results with that of existing fair ranking algorithms.
Abstract:Numerous applications capture in digital form aspects of people's lives. The resulting data, which we call Personal Digital Traces - PDTs, can be used to help reconstruct people's episodic memories and connect to their past personal events. This reconstruction has several applications, from helping patients with neurodegenerative diseases recall past events to gathering clues from multiple sources to identify recent contacts and places visited - a critical new application for the current health crisis. This paper takes steps towards integrating, connecting and summarizing the heterogeneous collection of data into episodic narratives using scripts - prototypical plans for everyday activities. Specifically, we propose a matching algorithm that groups several digital traces from many different sources into script instances (episodes), and we provide a technique for ranking the likelihood of candidate episodes. We report on the results of a study based on the personal data of real users, which gives evidence that our episode reconstruction technique 1) successfully integrates and combines traces from different sources into coherent episodes, and 2) augments users' memory of their past actions.
Abstract:Personal digital traces are constantly produced by connected devices, internet services and interactions. These digital traces are typically small, heterogeneous and stored in various locations in the cloud or on local devices, making it a challenge for users to interact with and search their own data. By adopting a multidimensional data model based on the six natural questions -- what, when, where, who, why and how -- to represent and unify heterogeneous personal digital traces, we can propose a learning-to-rank approach using the state of the art LambdaMART algorithm and frequency-based features that leverage the correlation between content (what), users (who), time (when), location (where) and data source (how) to improve the accuracy of search results. Due to the lack of publicly available personal training data, a combination of known-item query generation techniques and an unsupervised ranking model (field-based BM25) is used to build our own training sets. Experiments performed over a publicly available email collection and a personal digital data trace collection from a real user show that the frequency-based learning approach improves search accuracy when compared with traditional search tools.