Abstract:In limbed robotics, end-effectors must serve dual functions, such as both feet for locomotion and grippers for grasping, which presents design challenges. This paper introduces a multi-modal end-effector capable of transitioning between flat and line foot configurations while providing grasping capabilities. MAGPIE integrates 8-axis force sensing using proposed mechanisms with hall effect sensors, enabling both contact and tactile force measurements. We present a computational design framework for our sensing mechanism that accounts for noise and interference, allowing for desired sensitivity and force ranges and generating ideal inverse models. The hardware implementation of MAGPIE is validated through experiments, demonstrating its capability as a foot and verifying the performance of the sensing mechanisms, ideal models, and gated network-based models.
Abstract:This paper presents a novel approach through the design and implementation of Cycloidal Quasi-Direct Drive actuators for legged robotics. The cycloidal gear mechanism, with its inherent high torque density and mechanical robustness, offers significant advantages over conventional designs. By integrating cycloidal gears into the Quasi-Direct Drive framework, we aim to enhance the performance of legged robots, particularly in tasks demanding high torque and dynamic loads, while still keeping them lightweight. Additionally, we develop a torque estimation framework for the actuator using an Actuator Network, which effectively reduces the sim-to-real gap introduced by the cycloidal drive's complex dynamics. This integration is crucial for capturing the complex dynamics of a cycloidal drive, which contributes to improved learning efficiency, agility, and adaptability for reinforcement learning.