Abstract:This paper proposes a novel Transformer-based model for music score infilling, to generate a music passage that fills in the gap between given past and future contexts. While existing infilling approaches can generate a passage that connects smoothly locally with the given contexts, they do not take into account the musical form or structure of the music and may therefore generate overly smooth results. To address this issue, we propose a structure-aware conditioning approach that employs a novel attention-selecting module to supply user-provided structure-related information to the Transformer for infilling. With both objective and subjective evaluations, we show that the proposed model can harness the structural information effectively and generate melodies in the style of pop of higher quality than the two existing structure-agnostic infilling models.
Abstract:In this paper, we investigate using the variable-length infilling (VLI) model, which is originally proposed to infill missing segments, to "prolong" existing musical segments at musical boundaries. Specifically, as a case study, we expand 20 musical segments from 12 bars to 16 bars, and examine the degree to which the VLI model preserves musical boundaries in the expanded results using a few objective metrics, including the Register Histogram Similarity we newly propose. The results show that the VLI model has the potential to address the expansion task.