Abstract:We present DELIVER (Directed Execution of Language-instructed Item Via Engineered Relay), a fully integrated framework for cooperative multi-robot pickup and delivery driven by natural language commands. DELIVER unifies natural language understanding, spatial decomposition, relay planning, and motion execution to enable scalable, collision-free coordination in real-world settings. Given a spoken or written instruction, a lightweight instance of LLaMA3 interprets the command to extract pickup and delivery locations. The environment is partitioned using a Voronoi tessellation to define robot-specific operating regions. Robots then compute optimal relay points along shared boundaries and coordinate handoffs. A finite-state machine governs each robot's behavior, enabling robust execution. We implement DELIVER on the MultiTRAIL simulation platform and validate it in both ROS2-based Gazebo simulations and real-world hardware using TurtleBot3 robots. Empirical results show that DELIVER maintains consistent mission cost across varying team sizes while reducing per-agent workload by up to 55% compared to a single-agent system. Moreover, the number of active relay agents remains low even as team size increases, demonstrating the system's scalability and efficient agent utilization. These findings underscore DELIVER's modular and extensible architecture for language-guided multi-robot coordination, advancing the frontiers of cyber-physical system integration.
Abstract:We address the challenge of multi-robot autonomous hazard mapping in high-risk, failure-prone, communication-denied environments such as post-disaster zones, underground mines, caves, and planetary surfaces. In these missions, robots must explore and map hazards while minimizing the risk of failure due to environmental threats or hardware limitations. We introduce a behavior-adaptive, information-theoretic planning framework for multi-robot teams grounded in the concept of Behavioral Entropy (BE), that generalizes Shannon entropy (SE) to capture diverse human-like uncertainty evaluations. Building on this formulation, we propose the Behavior-Adaptive Path Planning (BAPP) framework, which modulates information gathering strategies via a tunable risk-sensitivity parameter, and present two planning algorithms: BAPP-TID for intelligent triggering of high-fidelity robots, and BAPP-SIG for safe deployment under high risk. We provide theoretical insights on the informativeness of the proposed BAPP framework and validate its effectiveness through both single-robot and multi-robot simulations. Our results show that the BAPP stack consistently outperforms Shannon-based and random strategies: BAPP-TID accelerates entropy reduction, while BAPP-SIG improves robot survivability with minimal loss in information gain. In multi-agent deployments, BAPP scales effectively through spatial partitioning, mobile base relocation, and role-aware heterogeneity. These findings underscore the value of behavior-adaptive planning for robust, risk-sensitive exploration in complex, failure-prone environments.
Abstract:In social robotics, a pivotal focus is enabling robots to engage with humans in a more natural and seamless manner. The emergence of advanced large language models (LLMs) such as Generative Pre-trained Transformers (GPTs) and autoregressive models like Large Language Model Meta AI (Llamas) has driven significant advancements in integrating natural language understanding capabilities into social robots. This paper presents a system for speech-guided sequential planning in autonomous navigation, utilizing Llama3 and the Robot Operating System~(ROS). The proposed system involves using Llama3 to interpret voice commands, extracting essential details through parsing, and decoding these commands into sequential actions for tasks. Such sequential planning is essential in various domains, particularly in the pickup and delivery of an object. Once a sequential navigation task is evaluated, we employ DRL-VO, a learning-based control policy that allows a robot to autonomously navigate through social spaces with static infrastructure and (crowds of) people. We demonstrate the effectiveness of the system in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in ROS2. We conduct hardware trials using a Clearpath Robotics Jackal UGV, highlighting its potential for real-world deployment in scenarios requiring flexible and interactive robotic behaviors.
Abstract:Effective communication is crucial for deploying robots in mission-specific tasks, but inadequate or unreliable communication can greatly reduce mission efficacy, for example in search and rescue missions where communication-denied conditions may occur. In such missions, robots are deployed to locate targets, such as human survivors, but they might get trapped at hazardous locations, such as in a trapping pit or by debris. Thus, the information the robot collected is lost owing to the lack of communication. In our prior work, we developed the notion of a path-based sensor. A path-based sensor detects whether or not an event has occurred along a particular path, but it does not provide the exact location of the event. Such path-based sensor observations are well-suited to communication-denied environments, and various studies have explored methods to improve information gathering in such settings. In some missions it is typical for target elements to be in close proximity to hazardous factors that hinder the information-gathering process. In this study, we examine a similar scenario and conduct experiments to determine if additional knowledge about the correlation between hazards and targets improves the efficiency of information gathering. To incorporate this knowledge, we utilize a Bayesian network representation of domain knowledge and develop an algorithm based on this representation. Our empirical investigation reveals that such additional information on correlation is beneficial only in environments with moderate hazard lethality, suggesting that while knowledge of correlation helps, further research and development is necessary for optimal outcomes.