Abstract:Coronary artery disease stands as one of the primary contributors to global mortality rates. The automated identification of coronary artery stenosis from X-ray images plays a critical role in the diagnostic process for coronary heart disease. This task is challenging due to the complex structure of coronary arteries, intrinsic noise in X-ray images, and the fact that stenotic coronary arteries appear narrow and blurred in X-ray angiographies. This study employs five different variants of the Mamba-based model and one variant of the Swin Transformer-based model, primarily based on the U-Net architecture, for the localization of stenosis in Coronary artery disease. Our best results showed an F1 score of 68.79% for the U-Mamba BOT model, representing an 11.8% improvement over the semi-supervised approach.
Abstract:State-of-the-art rule-based and classification-based food recommendation systems face significant challenges in becoming practical and useful. This difficulty arises primarily because most machine learning models struggle with problems characterized by an almost infinite number of classes and a limited number of samples within an unbalanced dataset. Conversely, the emergence of Large Language Models (LLMs) as recommendation engines offers a promising avenue. However, a general-purpose Recommendation as Language Processing (RLP) approach lacks the critical components necessary for effective food recommendations. To address this gap, we introduce Food Recommendation as Language Processing (F-RLP), a novel framework that offers a food-specific, tailored infrastructure. F-RLP leverages the capabilities of LLMs to maximize their potential, thereby paving the way for more accurate, personalized food recommendations.