Abstract:Multilingual NMT is a viable solution for translating low-resource languages (LRLs) when data from high-resource languages (HRLs) from the same language family is available. However, the training schedule, i.e. the order of presentation of languages, has an impact on the quality of such systems. Here, in a many-to-one translation setting, we propose to apply two algorithms that use reinforcement learning to optimize the training schedule of NMT: (1) Teacher-Student Curriculum Learning and (2) Deep Q Network. The former uses an exponentially smoothed estimate of the returns of each action based on the loss on monolingual or multilingual development subsets, while the latter estimates rewards using an additional neural network trained from the history of actions selected in different states of the system, together with the rewards received. On a 8-to-1 translation dataset with LRLs and HRLs, our second method improves BLEU and COMET scores with respect to both random selection of monolingual batches and shuffled multilingual batches, by adjusting the number of presentations of LRL vs. HRL batches.
Abstract:Many-to-one neural machine translation systems improve over one-to-one systems when training data is scarce. In this paper, we design and test a novel algorithm for selecting the language of minibatches when training such systems. The algorithm changes the language of the minibatch when the weights of the model do not evolve significantly, as measured by the smoothed KL divergence between all layers of the Transformer network. This algorithm outperforms the use of alternating monolingual batches, but not the use of shuffled batches, in terms of translation quality (measured with BLEU and COMET) and convergence speed.