Abstract:Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.
Abstract:We present the Siamese Continuous Bag of Words (Siamese CBOW) model, a neural network for efficient estimation of high-quality sentence embeddings. Averaging the embeddings of words in a sentence has proven to be a surprisingly successful and efficient way of obtaining sentence embeddings. However, word embeddings trained with the methods currently available are not optimized for the task of sentence representation, and, thus, likely to be suboptimal. Siamese CBOW handles this problem by training word embeddings directly for the purpose of being averaged. The underlying neural network learns word embeddings by predicting, from a sentence representation, its surrounding sentences. We show the robustness of the Siamese CBOW model by evaluating it on 20 datasets stemming from a wide variety of sources.