Abstract:For a robot to repair its own error, it must first know it has made a mistake. One way that people detect errors is from the implicit reactions from bystanders -- their confusion, smirks, or giggles clue us in that something unexpected occurred. To enable robots to detect and act on bystander responses to task failures, we developed a novel method to elicit bystander responses to human and robot errors. Using 46 different stimulus videos featuring a variety of human and machine task failures, we collected a total of 2452 webcam videos of human reactions from 54 participants. To test the viability of the collected data, we used the bystander reaction dataset as input to a deep-learning model, BADNet, to predict failure occurrence. We tested different data labeling methods and learned how they affect model performance, achieving precisions above 90%. We discuss strategies to model bystander reactions and predict failure and how this approach can be used in real-world robotic deployments to detect errors and improve robot performance. As part of this work, we also contribute with the "Bystander Affect Detection" (BAD) dataset of bystander reactions, supporting the development of better prediction models.
Abstract:Robots that carry out tasks and interact in complex environments will inevitably commit errors. Error detection is thus an important ability for robots to master, to work in an efficient and productive way. People leverage social cues from others around them to recognize and repair their own mistakes. With advances in computing and AI, it is increasingly possible for robots to achieve a similar error detection capability. In this work, we review current literature around the topic of how social cues can be used to recognize task failures for human-robot interaction (HRI). This literature review unites insights from behavioral science, human-robot interaction, and machine learning, to focus on three areas: 1) social cues for error detection (from behavioral science), 2) recognizing task failures in robots (from HRI), and 3) approaches for autonomous detection of HRI task failures based on social cues (from machine learning). We propose a taxonomy of error detection based on self-awareness and social feedback. Finally, we leave recommendations for HRI researchers and practitioners interested in developing robots that detect (physical) task errors using social cues from bystanders.