Abstract:Motivated by recent work on benign overfitting in overparameterized machine learning, we study the generalization behavior of functions in Sobolev spaces $W^{k, p}(\mathbb{R}^d)$ that perfectly fit a noisy training data set. Under assumptions of label noise and sufficient regularity in the data distribution, we show that approximately norm-minimizing interpolators, which are canonical solutions selected by smoothness bias, exhibit harmful overfitting: even as the training sample size $n \to \infty$, the generalization error remains bounded below by a positive constant with high probability. Our results hold for arbitrary values of $p \in [1, \infty)$, in contrast to prior results studying the Hilbert space case ($p = 2$) using kernel methods. Our proof uses a geometric argument which identifies harmful neighborhoods of the training data using Sobolev inequalities.




Abstract:Non-negative matrix factorization (NMF) and non-negative tensor factorization (NTF) decompose non-negative high-dimensional data into non-negative low-rank components. NMF and NTF methods are popular for their intrinsic interpretability and effectiveness on large-scale data. Recent work developed Stratified-NMF, which applies NMF to regimes where data may come from different sources (strata) with different underlying distributions, and seeks to recover both strata-dependent information and global topics shared across strata. Applying Stratified-NMF to multi-modal data requires flattening across modes, and therefore loses geometric structure contained implicitly within the tensor. To address this problem, we extend Stratified-NMF to the tensor setting by developing a multiplicative update rule and demonstrating the method on text and image data. We find that Stratified-NTF can identify interpretable topics with lower memory requirements than Stratified-NMF. We also introduce a regularized version of the method and demonstrate its effects on image data.