Abstract:Place recognition is a challenging task in computer vision, crucial for enabling autonomous vehicles and robots to navigate previously visited environments. While significant progress has been made in learnable multimodal methods that combine onboard camera images and LiDAR point clouds, the full potential of these methods remains largely unexplored in localization applications. In this paper, we study the impact of leveraging a multi-camera setup and integrating diverse data sources for multimodal place recognition, incorporating explicit visual semantics and text descriptions. Our proposed method named MSSPlace utilizes images from multiple cameras, LiDAR point clouds, semantic segmentation masks, and text annotations to generate comprehensive place descriptors. We employ a late fusion approach to integrate these modalities, providing a unified representation. Through extensive experiments on the Oxford RobotCar and NCLT datasets, we systematically analyze the impact of each data source on the overall quality of place descriptors. Our experiments demonstrate that combining data from multiple sensors significantly improves place recognition model performance compared to single modality approaches and leads to state-of-the-art quality. We also show that separate usage of visual or textual semantics (which are more compact representations of sensory data) can achieve promising results in place recognition. The code for our method is publicly available: https://github.com/alexmelekhin/MSSPlace
Abstract:Mapping is one of the crucial tasks enabling autonomous navigation of a mobile robot. Conventional mapping methods output dense geometric map representation, e.g. an occupancy grid, which is not trivial to keep consistent for the prolonged runs covering large environments. Meanwhile, capturing the topological structure of the workspace enables fast path planning, is less prone to odometry error accumulation and does not consume much memory. Following this idea, this paper introduces PRISM-TopoMap -- a topological mapping method that maintains a graph of locally aligned locations not relying on global metric coordinates. The proposed method involves learnable multimodal place recognition paired with the scan matching pipeline for localization and loop closure in the graph of locations. The latter is updated online and the robot is localized in a proper node at each time step. We conduct a broad experimental evaluation of the suggested approach in a range of photo-realistic environments and on a real robot (wheeled differential driven Husky robot), and compare it to state of the art. The results of the empirical evaluation confirm that PRISM-Topomap consistently outperforms competitors across several measures of mapping and navigation efficiency and performs well on a real robot. The code of PRISM-Topomap is open-sourced and available at https://github.com/kirillMouraviev/prism-topomap.