Abstract:Financial organizations collect a huge amount of data about clients that typically has a temporal (sequential) structure and is collected from various sources (modalities). Due to privacy issues, there are no large-scale open-source multimodal datasets of event sequences, which significantly limits the research in this area. In this paper, we present the industrial-scale publicly available multimodal banking dataset, MBD, that contains more than 1.5M corporate clients with several modalities: 950M bank transactions, 1B geo position events, 5M embeddings of dialogues with technical support and monthly aggregated purchases of four bank's products. All entries are properly anonymized from real proprietary bank data. Using this dataset, we introduce a novel benchmark with two business tasks: campaigning (purchase prediction in the next month) and matching of clients. We provide numerical results that demonstrate the superiority of our multi-modal baselines over single-modal techniques for each task. As a result, the proposed dataset can open new perspectives and facilitate the future development of practically important large-scale multimodal algorithms for event sequences. HuggingFace Link: https://huggingface.co/datasets/ai-lab/MBD Github Link: https://github.com/Dzhambo/MBD
Abstract:Combinatorial optimization problems require an exhaustive search to find the optimal solution. A convenient approach to solving combinatorial optimization tasks in the form of Mixed Integer Linear Programs is Branch-and-Bound. Branch-and-Bound solver splits a task into two parts dividing the domain of an integer variable, then it solves them recursively, producing a tree of nested sub-tasks. The efficiency of the solver depends on the branchning heuristic used to select a variable for splitting. In the present work, we propose a reinforcement learning method that can efficiently learn the branching heuristic. We view the variable selection task as a tree Markov Decision Process, prove that the Bellman operator adapted for the tree Markov Decision Process is contracting in mean, and propose a modified learning objective for the reinforcement learning agent. Our agent requires less training data and produces smaller trees compared to previous reinforcement learning methods.