Abstract:Manipulating objects with robotic hands is a complicated task. Not only the pose of the robot's end effector, but also the fingers of the hand need to be controlled and coordinated. Using human demonstrations of movements is an intuitive and data-efficient way of guiding the robot's behavior. We propose a modular framework with an automatic embodiment mapping to transfer human hand motions to robotic systems and use motion capture to record human motion. We evaluate our approach on eight challenging tasks, in which a robotic arm with a mounted robotic hand needs to grasp and manipulate deformable objects or small, fragile material.
Abstract:Several publications are concerned with learning inverse kinematics, however, their evaluation is often limited and none of the proposed methods is of practical relevance for rigid-body kinematics with a known forward model. We argue that for rigid-body kinematics one of the first proposed machine learning (ML) solutions to inverse kinematics -- distal teaching (DT) -- is actually good enough when combined with differentiable programming libraries and we provide an extensive evaluation and comparison to analytical and numerical solutions. In particular, we analyze solve rate, accuracy, sample efficiency and scalability. Further, we study how DT handles joint limits, singularities, unreachable poses, trajectories and provide a comparison of execution times. The three approaches are evaluated on three different rigid body mechanisms with varying complexity. With enough training data and relaxed precision requirements, DT has a better solve rate and is faster than state-of-the-art numerical solvers for a 15-DoF mechanism. DT is not affected by singularities while numerical solutions are vulnerable to them. In all other cases numerical solutions are usually better. Analytical solutions outperform the other approaches by far if they are available.
Abstract:Recent success of machine learning in many domains has been overwhelming, which often leads to false expectations regarding the capabilities of behavior learning in robotics. In this survey, we analyze the current state of machine learning for robotic behaviors. We will give a broad overview of behaviors that have been learned and used on real robots. Our focus is on kinematically or sensorially complex robots. That includes humanoid robots or parts of humanoid robots, for example, legged robots or robotic arms. We will classify presented behaviors according to various categories and we will draw conclusions about what can be learned and what should be learned. Furthermore, we will give an outlook on problems that are challenging today but might be solved by machine learning in the future and argue that classical robotics and other approaches from artificial intelligence should be integrated more with machine learning to form complete, autonomous systems.
Abstract:Imitation learning is a way to teach robots skills that are demonstrated by humans. Transfering skills between these different kinematic structures seems to be straightforward in Cartesian space. Because of the correspondence problem, however, the result will most likely not be identical. This is why refinement is required, for example, by policy search. Policy search in Cartesian space is prone to reachability problems when using conventional inverse kinematic solvers. We propose a configurable approximate inverse kinematic solver and show that it can accelerate the refinement process considerably. We also compare empirically refinement in Cartesian space and refinement in joint space.
Abstract:Contextual policy search (CPS) is a class of multi-task reinforcement learning algorithms that is particularly useful for robotic applications. A recent state-of-the-art method is Contextual Covariance Matrix Adaptation Evolution Strategies (C-CMA-ES). It is based on the standard black-box optimization algorithm CMA-ES. There are two useful extensions of CMA-ES that we will transfer to C-CMA-ES and evaluate empirically: ACM-ES, which uses a comparison-based surrogate model, and aCMA-ES, which uses an active update of the covariance matrix. We will show that improvements with these methods can be impressive in terms of sample-efficiency, although this is not relevant any more for the robotic domain.