Abstract:We study two basic statistical tasks in non-interactive local differential privacy (LDP): learning and refutation. Learning requires finding a concept that best fits an unknown target function (from labelled samples drawn from a distribution), whereas refutation requires distinguishing between data distributions that are well-correlated with some concept in the class, versus distributions where the labels are random. Our main result is a complete characterization of the sample complexity of agnostic PAC learning for non-interactive LDP protocols. We show that the optimal sample complexity for any concept class is captured by the approximate $\gamma_2$~norm of a natural matrix associated with the class. Combined with previous work [Edmonds, Nikolov and Ullman, 2019] this gives an equivalence between learning and refutation in the agnostic setting.
Abstract:We give new characterizations of the sample complexity of answering linear queries (statistical queries) in the local and central models of differential privacy: *In the non-interactive local model, we give the first approximate characterization of the sample complexity. Informally our bounds are tight to within polylogarithmic factors in the number of queries and desired accuracy. Our characterization extends to agnostic learning in the local model. *In the central model, we give a characterization of the sample complexity in the high-accuracy regime that is analogous to that of Nikolov, Talwar, and Zhang (STOC 2013), but is both quantitatively tighter and has a dramatically simpler proof. Our lower bounds apply equally to the empirical and population estimation problems. In both cases, our characterizations show that a particular factorization mechanism is approximately optimal, and the optimal sample complexity is bounded from above and below by well studied factorization norms of a matrix associated with the queries.