Abstract:Machine learning (ML) holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities. An important step is to characterize the (un)fairness of ML models - their tendency to perform differently across subgroups of the population - and to understand its underlying mechanisms. One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data. However, diagnosing this phenomenon is difficult, especially when sensitive attributes are causally linked with disease. Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems, and demonstrate its application to clinical tasks in radiology and dermatology. Finally, our approach reveals instances when shortcutting is not responsible for unfairness, highlighting the need for a holistic approach to fairness mitigation in medical AI.
Abstract:We propose to use boosted regression trees as a way to compute human-interpretable solutions to reinforcement learning problems. Boosting combines several regression trees to improve their accuracy without significantly reducing their inherent interpretability. Prior work has focused independently on reinforcement learning and on interpretable machine learning, but there has been little progress in interpretable reinforcement learning. Our experimental results show that boosted regression trees compute solutions that are both interpretable and match the quality of leading reinforcement learning methods.