Abstract:The AI chips increasingly focus on implementing neural computing at low power and cost. The intelligent sensing, automation, and edge computing applications have been the market drivers for AI chips. Increasingly, the generalisation, performance, robustness, and scalability of the AI chip solutions are compared with human-like intelligence abilities. Such a requirement to transit from application-specific to general intelligence AI chip must consider several factors. This paper provides an overview of this cross-disciplinary field of study, elaborating on the generalisation of intelligence as understood in building artificial general intelligence (AGI) systems. This work presents a listing of emerging AI chip technologies, classification of edge AI implementations, and the funnel design flow for AGI chip development. Finally, the design consideration required for building an AGI chip is listed along with the methods for testing and validating it.
Abstract:The quantization of weights to binary states in Deep Neural Networks (DNNs) can replace resource-hungry multiply accumulate operations with simple accumulations. Such Binarized Neural Networks (BNNs) exhibit greatly reduced resource and power requirements. In addition, memristors have been shown as promising synaptic weight elements in DNNs. In this paper, we propose and simulate novel Binarized Memristive Convolutional Neural Network (BMCNN) architectures employing hybrid weight and parameter representations. We train the proposed architectures offline and then map the trained parameters to our binarized memristive devices for inference. To take into account the variations in memristive devices, and to study their effect on the performance, we introduce variations in $R_{ON}$ and $R_{OFF}$. Moreover, we introduce means to mitigate the adverse effect of memristive variations in our proposed networks. Finally, we benchmark our BMCNNs and variation-aware BMCNNs using the MNIST dataset.