Abstract:This work explores using Large Language Models (LLMs) to translate user preferences into energy optimization constraints for home appliances. We describe a task where natural language user utterances are converted into formal constraints for smart appliances, within the broader context of a renewable energy community (REC) and in the Italian scenario. We evaluate the effectiveness of various LLMs currently available for Italian in translating these preferences resorting to classical zero-shot, one-shot, and few-shot learning settings, using a pilot dataset of Italian user requests paired with corresponding formal constraint representation. Our contributions include establishing a baseline performance for this task, publicly releasing the dataset and code for further research, and providing insights on observed best practices and limitations of LLMs in this particular domain
Abstract:The detection of blood disorders often hinges upon the quantification of specific blood cell types. Variations in cell counts may indicate the presence of pathological conditions. Thus, the significance of developing precise automatic systems for blood cell enumeration is underscored. The investigation focuses on a novel approach termed DE-ViT. This methodology is employed in a Few-Shot paradigm, wherein training relies on a limited number of images. Two distinct datasets are utilised for experimental purposes: the Raabin-WBC dataset for Leukocyte detection and a local dataset for Schistocyte identification. In addition to the DE-ViT model, two baseline models, Faster R-CNN 50 and Faster R-CNN X 101, are employed, with their outcomes being compared against those of the proposed model. While DE-ViT has demonstrated state-of-the-art performance on the COCO and LVIS datasets, both baseline models surpassed its performance on the Raabin-WBC dataset. Moreover, only Faster R-CNN X 101 yielded satisfactory results on the SC-IDB. The observed disparities in performance may possibly be attributed to domain shift phenomena.
Abstract:Gastric cancer ranks as the fifth most common and fourth most lethal cancer globally, with a dismal 5-year survival rate of approximately 20%. Despite extensive research on its pathobiology, the prognostic predictability remains inadequate, compounded by pathologists' high workload and potential diagnostic errors. Thus, automated, accurate histopathological diagnosis tools are crucial. This study employs Machine Learning and Deep Learning techniques to classify histopathological images into healthy and cancerous categories. Using handcrafted and deep features with shallow learning classifiers on the GasHisSDB dataset, we offer a comparative analysis and insights into the most robust and high-performing combinations of features and classifiers for distinguishing between normal and abnormal histopathological images without fine-tuning strategies. With the RF classifier, our approach can reach F1 of 93.4%, demonstrating its validity.
Abstract:When devising recommendation services, it is important to account for the interests of all content providers, encompassing not only newcomers but also minority demographic groups. In various instances, certain provider groups find themselves underrepresented in the item catalog, a situation that can influence recommendation results. Hence, platform owners often seek to regulate the exposure of these provider groups in the recommended lists. In this paper, we propose a novel cost-sensitive approach designed to guarantee these target exposure levels in pairwise recommendation models. This approach quantifies, and consequently mitigate, the discrepancies between the volume of recommendations allocated to groups and their contribution in the item catalog, under the principle of equity. Our results show that this approach, while aligning groups exposure with their assigned levels, does not compromise to the original recommendation utility. Source code and pre-processed data can be retrieved at https://github.com/alessandraperniciano/meta-learning-strategy-fair-provider-exposure.