Abstract:Multispectral point cloud (MPC) captures 3D spatial-spectral information from the observed scene, which can be used for scene understanding and has a wide range of applications. However, most of the existing classification methods were extensively tested on indoor datasets, and when applied to outdoor datasets they still face problems including sparse labeled targets, differences in land-covers scales, and long-tailed distributions. To address the above issues, an enhanced classification method based on adaptive multi-scale fusion for MPCs with long-tailed distributions is proposed. In the training set generation stage, a grid-balanced sampling strategy is designed to reliably generate training samples from sparse labeled datasets. In the feature learning stage, a multi-scale feature fusion module is proposed to fuse shallow features of land-covers at different scales, addressing the issue of losing fine features due to scale variations in land-covers. In the classification stage, an adaptive hybrid loss module is devised to utilize multi-classification heads with adaptive weights to balance the learning ability of different classes, improving the classification performance of small classes due to various-scales and long-tailed distributions in land-covers. Experimental results on three MPC datasets demonstrate the effectiveness of the proposed method compared with the state-of-the-art methods.
Abstract:Deep subspace clustering methods are now prominent in clustering, typically using fully connected networks and a self-representation loss function. However, these methods often struggle with overfitting and lack interpretability. In this paper, we explore an alternative clustering approach based on deep unfolding. By unfolding iterative optimization methods into neural networks, this approach offers enhanced interpretability and reliability compared to data-driven deep learning methods, and greater adaptability and generalization than model-based approaches. Hence, unfolding has become widely used in inverse imaging problems, such as image restoration, reconstruction, and super-resolution, but has not been sufficiently explored yet in the context of clustering. In this work, we introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering. To our knowledge, this is the first attempt to apply unfolding ADMM for computing the self-representation matrix in subspace clustering. Moreover, our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module. Experimental evaluation of three established HSI datasets shows clearly the potential of the unfolding approach in HSI clustering and even demonstrates superior performance compared to state-of-the-art techniques.