Abstract:The evaluation of informative path planning algorithms for autonomous vehicles is often hindered by fragmented execution pipelines and limited transferability between simulation and real-world deployment. This paper introduces a unified architecture that decouples high-level decision-making from vehicle-specific control, enabling algorithms to be evaluated consistently across different abstraction levels without modification. The proposed architecture is realized through GuadalPlanner, which defines standardized interfaces between planning, sensing, and vehicle execution. It is an open and extensible research tool that supports discrete graph-based environments and interchangeable planning strategies, and is built upon widely adopted robotics technologies, including ROS2, MAVLink, and MQTT. Its design allows the same algorithmic logic to be deployed in fully simulated environments, software-in-the-loop configurations, and physical autonomous vehicles using an identical execution pipeline. The approach is validated through a set of experiments, including real-world deployment on an autonomous surface vehicle performing water quality monitoring with real-time sensor feedback.
Abstract:This work addresses the problem of analyzing cooperation in heterogeneous multi-agent systems which operate under partial observability and temporal role dependency, framed within a destructive multi-agent foraging setting. Unlike most previous studies, which focus primarily on algorithmic performance with respect to task completion, this article proposes a systematic set of general-purpose cooperation metrics aimed at characterizing not only efficiency, but also coordination and dependency between teams and agents, fairness, and sensitivity. These metrics are designed to be transferable to different multi-agent sequential domains similar to foraging. The proposed suite of metrics is structured into three main categories that jointly provide a multilevel characterization of cooperation: primary metrics, inter-team metrics, and intra-team metrics. They have been validated in a realistic destructive foraging scenario inspired by dynamic aquatic surface cleaning using heterogeneous autonomous vehicles. It involves two specialized teams with sequential dependencies: one focused on the search of resources, and another on their destruction. Several representative approaches have been evaluated, covering both learning-based algorithms and classical heuristic paradigms.




Abstract:This paper presents a model-free deep reinforcement learning framework for informative path planning with heterogeneous fleets of autonomous surface vehicles to locate and collect plastic waste. The system employs two teams of vehicles: scouts and cleaners. Coordination between these teams is achieved through a deep reinforcement approach, allowing agents to learn strategies to maximize cleaning efficiency. The primary objective is for the scout team to provide an up-to-date contamination model, while the cleaner team collects as much waste as possible following this model. This strategy leads to heterogeneous teams that optimize fleet efficiency through inter-team cooperation supported by a tailored reward function. Different trainings of the proposed algorithm are compared with other state-of-the-art heuristics in two distinct scenarios, one with high convexity and another with narrow corridors and challenging access. According to the obtained results, it is demonstrated that deep reinforcement learning based algorithms outperform other benchmark heuristics, exhibiting superior adaptability. In addition, training with greedy actions further enhances performance, particularly in scenarios with intricate layouts.




Abstract:The use of Autonomous Surface Vehicles, equipped with water quality sensors and artificial vision systems, allows for a smart and adaptive deployment in water resources environmental monitoring. This paper presents a real implementation of a vehicle prototype that to address the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring. The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth. Furthermore, by means of a stereo-camera, it also can detect and locate macro-plastics in real environments by means of deep visual models, such as YOLOv5. In this paper, experimental results, carried out in Lago Mayor (Sevilla), has been presented as proof of the capabilities of the proposed architecture. The overall system, and the early results obtained, are expected to provide a solid example of a real platform useful for the water resource monitoring task, and to serve as a real case scenario for deploying Artificial Intelligence algorithms, such as path planning, artificial vision, etc.