Abstract:This paper presents a model-free deep reinforcement learning framework for informative path planning with heterogeneous fleets of autonomous surface vehicles to locate and collect plastic waste. The system employs two teams of vehicles: scouts and cleaners. Coordination between these teams is achieved through a deep reinforcement approach, allowing agents to learn strategies to maximize cleaning efficiency. The primary objective is for the scout team to provide an up-to-date contamination model, while the cleaner team collects as much waste as possible following this model. This strategy leads to heterogeneous teams that optimize fleet efficiency through inter-team cooperation supported by a tailored reward function. Different trainings of the proposed algorithm are compared with other state-of-the-art heuristics in two distinct scenarios, one with high convexity and another with narrow corridors and challenging access. According to the obtained results, it is demonstrated that deep reinforcement learning based algorithms outperform other benchmark heuristics, exhibiting superior adaptability. In addition, training with greedy actions further enhances performance, particularly in scenarios with intricate layouts.
Abstract:The use of Autonomous Surface Vehicles, equipped with water quality sensors and artificial vision systems, allows for a smart and adaptive deployment in water resources environmental monitoring. This paper presents a real implementation of a vehicle prototype that to address the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring. The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth. Furthermore, by means of a stereo-camera, it also can detect and locate macro-plastics in real environments by means of deep visual models, such as YOLOv5. In this paper, experimental results, carried out in Lago Mayor (Sevilla), has been presented as proof of the capabilities of the proposed architecture. The overall system, and the early results obtained, are expected to provide a solid example of a real platform useful for the water resource monitoring task, and to serve as a real case scenario for deploying Artificial Intelligence algorithms, such as path planning, artificial vision, etc.