Abstract:In this paper, we propose a model for building natural language explanations for Bayesian Network Reasoning in terms of factor arguments, which are argumentation graphs of flowing evidence, relating the observed evidence to a target variable we want to learn about. We introduce the notion of factor argument independence to address the outstanding question of defining when arguments should be presented jointly or separately and present an algorithm that, starting from the evidence nodes and a target node, produces a list of all independent factor arguments ordered by their strength. Finally, we implemented a scheme to build natural language explanations of Bayesian Reasoning using this approach. Our proposal has been validated in the medical domain through a human-driven evaluation study where we compare the Bayesian Network Reasoning explanations obtained using factor arguments with an alternative explanation method. Evaluation results indicate that our proposed explanation approach is deemed by users as significantly more useful for understanding Bayesian Network Reasoning than another existing explanation method it is compared to.
Abstract:In this work, we propose a novel method for Bayesian Networks (BNs) structure elicitation that is based on the initialization of several LLMs with different experiences, independently querying them to create a structure of the BN, and further obtaining the final structure by majority voting. We compare the method with one alternative method on various widely and not widely known BNs of different sizes and study the scalability of both methods on them. We also propose an approach to check the contamination of BNs in LLM, which shows that some widely known BNs are inapplicable for testing the LLM usage for BNs structure elicitation. We also show that some BNs may be inapplicable for such experiments because their node names are indistinguishable. The experiments on the other BNs show that our method performs better than the existing method with one of the three studied LLMs; however, the performance of both methods significantly decreases with the increase in BN size.
Abstract:The main goal of this work is to analyze the behaviour of the FA quantifier fuzzification mechanism. As we prove in the paper, this model has a very solid theorethical behaviour, superior to most of the models defined in the literature. Moreover, we show that the underlying probabilistic interpretation has very interesting consequences.