Abstract:Human physiological signals tend to exhibit both global and local structures: the former are shared across a population, while the latter reflect inter-individual variability. For instance, kinetic measurements of the gait cycle during locomotion present common characteristics, although idiosyncrasies may be observed due to biomechanical disposition or pathology. To better represent datasets with local-global structure, this work extends Convolutional Dictionary Learning (CDL), a popular method for learning interpretable representations, or dictionaries, of time-series data. In particular, we propose Personalized CDL (PerCDL), in which a local dictionary models local information as a personalized spatiotemporal transformation of a global dictionary. The transformation is learnable and can combine operations such as time warping and rotation. Formal computational and statistical guarantees for PerCDL are provided and its effectiveness on synthetic and real human locomotion data is demonstrated.
Abstract:We introduce a novel class of generative models based on piecewise deterministic Markov processes (PDMPs), a family of non-diffusive stochastic processes consisting of deterministic motion and random jumps at random times. Similarly to diffusions, such Markov processes admit time reversals that turn out to be PDMPs as well. We apply this observation to three PDMPs considered in the literature: the Zig-Zag process, Bouncy Particle Sampler, and Randomised Hamiltonian Monte Carlo. For these three particular instances, we show that the jump rates and kernels of the corresponding time reversals admit explicit expressions depending on some conditional densities of the PDMP under consideration before and after a jump. Based on these results, we propose efficient training procedures to learn these characteristics and consider methods to approximately simulate the reverse process. Finally, we provide bounds in the total variation distance between the data distribution and the resulting distribution of our model in the case where the base distribution is the standard $d$-dimensional Gaussian distribution. Promising numerical simulations support further investigations into this class of models.