Jindal School of Management, The University of Texas at Dallas
Abstract:A generic, fast and asymptotically efficient method for parametric estimation is described. It is based on the stochastic gradient descent on the loglikelihood function corrected by a single step of the Fisher scoring algorithm. We show theoretically and by simulations in the i.i.d. setting that it is an interesting alternative to the usual stochastic gradient descent with averaging or the adaptative stochastic gradient descent.
Abstract:We survey in this article the connections between Machine Learning and Control Theory. Control Theory provide useful concepts and tools for Machine Learning. Conversely Machine Learning can be used to solve large control problems. In the first part of the paper, we develop the connections between reinforcement learning and Markov Decision Processes, which are discrete time control problems. In the second part, we review the concept of supervised learning and the relation with static optimization. Deep learning which extends supervised learning, can be viewed as a control problem. In the third part, we present the links between stochastic gradient descent and mean-field theory. Conversely, in the fourth and fifth parts, we review machine learning approaches to stochastic control problems, and focus on the deterministic case, to explain, more easily, the numerical algorithms.