Abstract:In this paper, we introduce Audiopedia, a novel task called Audio Question Answering with Knowledge, which requires both audio comprehension and external knowledge reasoning. Unlike traditional Audio Question Answering (AQA) benchmarks that focus on simple queries answerable from audio alone, Audiopedia targets knowledge-intensive questions. We define three sub-tasks: (i) Single Audio Question Answering (s-AQA), where questions are answered based on a single audio sample, (ii) Multi-Audio Question Answering (m-AQA), which requires reasoning over multiple audio samples, and (iii) Retrieval-Augmented Audio Question Answering (r-AQA), which involves retrieving relevant audio to answer the question. We benchmark large audio language models (LALMs) on these sub-tasks and observe suboptimal performance. To address this, we propose a generic framework that can be adapted to any LALM, equipping them with knowledge reasoning capabilities. Our framework has two components: (i) Audio Entity Linking (AEL) and (ii) Knowledge-Augmented Audio Large Multimodal Model (KA2LM), which together improve performance on knowledge-intensive AQA tasks. To our knowledge, this is the first work to address advanced audio understanding via knowledge-intensive tasks like Audiopedia.
Abstract:This research provides a novel framework to estimate the economic, environmental, and social values of electrifying public transit buses, for cities across the world, based on open-source data. Electric buses are a compelling candidate to replace diesel buses for the environmental and social benefits. However, the state-of-art models to evaluate the value of bus electrification are limited in applicability because they require granular and bespoke data on bus operation that can be difficult to procure. Our valuation tool uses General Transit Feed Specification, a standard data format used by transit agencies worldwide, to provide high-level guidance on developing a prioritization strategy for electrifying a bus fleet. We develop physics-informed machine learning models to evaluate the energy consumption, the carbon emissions, the health impacts, and the total cost of ownership for each transit route. We demonstrate the scalability of our tool with a case study of the bus lines in the Greater Boston and Milan metropolitan areas.