Abstract:Batteries plays an essential role in modern energy ecosystem and are widely used in daily applications such as cell phones and electric vehicles. For many applications, the health status of batteries plays a critical role in the performance of the system by indicating efficient maintenance and on-time replacement. Directly modeling an individual battery using a computational models based on physical rules can be of low-efficiency, in terms of the difficulties in build such a model and the computational effort of tuning and running it especially on the edge. With the rapid development of sensor technology (to provide more insights into the system) and machine learning (to build capable yet fast model), it is now possible to directly build a data-riven model of the battery health status using the data collected from historical battery data (being possibly local and remote) to predict local battery health status in the future accurately. Nevertheless, most data-driven methods are trained based on the local battery data and lack the ability to extract common properties, such as generations and degradation, in the life span of other remote batteries. In this paper, we utilize a Gaussian process dynamical model (GPDM) to build a data-driven model of battery health status and propose a knowledge transfer method to extract common properties in the life span of all batteries to accurately predict the battery health status with and without features extracted from the local battery. For modern benchmark problems, the proposed method outperform the state-of-the-art methods with significant margins in terms of accuracy and is able to accuracy predict the regeneration process.
Abstract:We introduce a Bayesian framework for inference with a supervised version of the Gaussian process latent variable model. The framework overcomes the high correlations between latent variables and hyperparameters by using an unbiased pseudo estimate for the marginal likelihood that approximately integrates over the latent variables. This is used to construct a Markov Chain to explore the posterior of the hyperparameters. We demonstrate the procedure on simulated and real examples, showing its ability to capture uncertainty and multimodality of the hyperparameters and improved uncertainty quantification in predictions when compared with variational inference.