Abstract:A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games like Pok\'emon or League of Legends, it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this paper we present such a Meta Discovery framework, leveraging Reinforcement Learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in Pok\'emon Showdown, a collection of competitive Pok\'emon tiers, with high accuracy.
Abstract:As language models are increasingly included in human-facing machine learning tools, bias against demographic subgroups has gained attention. We propose FineDeb, a two-phase debiasing framework for language models that starts with contextual debiasing of embeddings learned by pretrained language models. The model is then fine-tuned on a language modeling objective. Our results show that FineDeb offers stronger debiasing in comparison to other methods which often result in models as biased as the original language model. Our framework is generalizable for demographics with multiple classes, and we demonstrate its effectiveness through extensive experiments and comparisons with state of the art techniques. We release our code and data on GitHub.
Abstract:Machine learning has had a great deal of success in image processing. However, the focus of this work has largely been on realistic images, ignoring more niche art styles such as pixel art. Additionally, many traditional machine learning models that focus on groups of pixels do not work well with pixel art, where individual pixels are important. We propose the Pixel VQ-VAE, a specialized VQ-VAE model that learns representations of pixel art. We show that it outperforms other models in both the quality of embeddings as well as performance on downstream tasks.
Abstract:Facial expression recognition is a topic of great interest in most fields from artificial intelligence and gaming to marketing and healthcare. The goal of this paper is to classify images of human faces into one of seven basic emotions. A number of different models were experimented with, including decision trees and neural networks before arriving at a final Convolutional Neural Network (CNN) model. CNNs work better for image recognition tasks since they are able to capture spacial features of the inputs due to their large number of filters. The proposed model consists of six convolutional layers, two max pooling layers and two fully connected layers. Upon tuning of the various hyperparameters, this model achieved a final accuracy of 0.60.