Abstract:EMG-based hand gesture recognition uses electromyographic~(EMG) signals to interpret and classify hand movements by analyzing electrical activity generated by muscle contractions. It has wide applications in prosthesis control, rehabilitation training, and human-computer interaction. Using electrodes placed on the skin, the EMG sensor captures muscle signals, which are processed and filtered to reduce noise. Numerous feature extraction and machine learning algorithms have been proposed to extract and classify muscle signals to distinguish between various hand gestures. This paper aims to benchmark the performance of EMG-based hand gesture recognition using novel feature extraction methods, namely, fused time-domain descriptors, temporal-spatial descriptors, and wavelet transform-based features, combined with the state-of-the-art machine and deep learning models. Experimental investigations on the Grabmyo dataset demonstrate that the 1D Dilated CNN performed the best with an accuracy of $97\%$ using fused time-domain descriptors such as power spectral moments, sparsity, irregularity factor and waveform length ratio. Similarly, on the FORS-EMG dataset, random forest performed the best with an accuracy of $94.95\%$ using temporal-spatial descriptors (which include time domain features along with additional features such as coefficient of variation (COV), and Teager-Kaiser energy operator (TKEO)).
Abstract:With the significant advances in deep generative models for image and video synthesis, Deepfakes and manipulated media have raised severe societal concerns. Conventional machine learning classifiers for deepfake detection often fail to cope with evolving deepfake generation technology and are susceptible to adversarial attacks. Alternatively, invisible image watermarking is being researched as a proactive defense technique that allows media authentication by verifying an invisible secret message embedded in the image pixels. A handful of invisible image watermarking techniques introduced for media authentication have proven vulnerable to basic image processing operations and watermark removal attacks. In response, we have proposed a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication. Our proposed watermarking framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks. This is facilitated through a unique architecture of our proposed technique consisting of critic and adversarial networks that enforce high image quality and resiliency to watermark removal efforts, respectively, along with the backbone encoder-decoder and the discriminator networks. Thorough experimental investigations on SOTA facial Deepfake datasets demonstrate that our proposed model can embed a $64$-bit secret as an imperceptible image watermark that can be recovered with a high-bit recovery accuracy when benign image processing operations are applied while being non-recoverable when unseen Deepfake manipulations are applied. In addition, our proposed watermarking technique demonstrates high resilience to several white-box and black-box watermark removal attacks. Thus, obtaining state-of-the-art performance.
Abstract:Published research highlights the presence of demographic bias in automated facial attribute classification algorithms, particularly impacting women and individuals with darker skin tones. Existing bias mitigation techniques typically require demographic annotations and often obtain a trade-off between fairness and accuracy, i.e., Pareto inefficiency. Facial attributes, whether common ones like gender or others such as "chubby" or "high cheekbones", exhibit high interclass similarity and intraclass variation across demographics leading to unequal accuracy. This requires the use of local and subtle cues using fine-grained analysis for differentiation. This paper proposes a novel approach to fair facial attribute classification by framing it as a fine-grained classification problem. Our approach effectively integrates both low-level local features (like edges and color) and high-level semantic features (like shapes and structures) through cross-layer mutual attention learning. Here, shallow to deep CNN layers function as experts, offering category predictions and attention regions. An exhaustive evaluation on facial attribute annotated datasets demonstrates that our FineFACE model improves accuracy by 1.32% to 1.74% and fairness by 67% to 83.6%, over the SOTA bias mitigation techniques. Importantly, our approach obtains a Pareto-efficient balance between accuracy and fairness between demographic groups. In addition, our approach does not require demographic annotations and is applicable to diverse downstream classification tasks. To facilitate reproducibility, the code and dataset information is available at https://github.com/VCBSL-Fairness/FineFACE.
Abstract:In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity. Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat. Current multi-modal deepfake detectors are often based on the attention-based fusion of heterogeneous data streams from multiple modalities. However, the heterogeneous nature of the data (such as audio and visual signals) creates a distributional modality gap and poses a significant challenge in effective fusion and hence multi-modal deepfake detection. In this paper, we propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection. The proposed approach applies attention to multi-modal multi-sequence representations and learns the contributing features among them for deepfake detection and localization. Thorough experimental validations on audio-visual deepfake datasets, namely FakeAVCeleb, AV-Deepfake1M, TVIL, and LAV-DF datasets, demonstrate the efficacy of our approach. Cross-comparison with the published studies demonstrates superior performance of our approach with an improved accuracy and precision by 3.47% and 2.05% in deepfake detection and localization, respectively. Thus, obtaining state-of-the-art performance. To facilitate reproducibility, the code and the datasets information is available at https://github.com/vcbsl/audiovisual-deepfake/.
Abstract:Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification.
Abstract:Due to an alarming trend related to obesity affecting 93.3 million adults in the United States alone, body mass index (BMI) and body weight have drawn significant interest in various health monitoring applications. Consequently, several studies have proposed self-diagnostic facial image-based BMI prediction methods for healthy weight monitoring. These methods have mostly used convolutional neural network (CNN) based regression baselines, such as VGG19, ResNet50, and Efficient-NetB0, for BMI prediction from facial images. However, the high computational requirement of these heavy-weight CNN models limits their deployment to resource-constrained mobile devices, thus deterring weight monitoring using smartphones. This paper aims to develop a lightweight facial patch-based ensemble (PatchBMI-Net) for BMI prediction to facilitate the deployment and weight monitoring using smartphones. Extensive experiments on BMI-annotated facial image datasets suggest that our proposed PatchBMI-Net model can obtain Mean Absolute Error (MAE) in the range [3.58, 6.51] with a size of about 3.3 million parameters. On cross-comparison with heavyweight models, such as ResNet-50 and Xception, trained for BMI prediction from facial images, our proposed PatchBMI-Net obtains equivalent MAE along with the model size reduction of about 5.4x and the average inference time reduction of about 3x when deployed on Apple-14 smartphone. Thus, demonstrating performance efficiency as well as low latency for on-device deployment and weight monitoring using smartphone applications.
Abstract:Deepfakes are synthetic media generated using deep generative algorithms and have posed a severe societal and political threat. Apart from facial manipulation and synthetic voice, recently, a novel kind of deepfakes has emerged with either audio or visual modalities manipulated. In this regard, a new generation of multimodal audio-visual deepfake detectors is being investigated to collectively focus on audio and visual data for multimodal manipulation detection. Existing multimodal (audio-visual) deepfake detectors are often based on the fusion of the audio and visual streams from the video. Existing studies suggest that these multimodal detectors often obtain equivalent performances with unimodal audio and visual deepfake detectors. We conjecture that the heterogeneous nature of the audio and visual signals creates distributional modality gaps and poses a significant challenge to effective fusion and efficient performance. In this paper, we tackle the problem at the representation level to aid the fusion of audio and visual streams for multimodal deepfake detection. Specifically, we propose the joint use of modality (audio and visual) invariant and specific representations. This ensures that the common patterns and patterns specific to each modality representing pristine or fake content are preserved and fused for multimodal deepfake manipulation detection. Our experimental results on FakeAVCeleb and KoDF audio-visual deepfake datasets suggest the enhanced accuracy of our proposed method over SOTA unimodal and multimodal audio-visual deepfake detectors by $17.8$% and $18.4$%, respectively. Thus, obtaining state-of-the-art performance.
Abstract:Facial forgery by deepfakes has caused major security risks and raised severe societal concerns. As a countermeasure, a number of deepfake detection methods have been proposed. Most of them model deepfake detection as a binary classification problem using a backbone convolutional neural network (CNN) architecture pretrained for the task. These CNN-based methods have demonstrated very high efficacy in deepfake detection with the Area under the Curve (AUC) as high as $0.99$. However, the performance of these methods degrades significantly when evaluated across datasets and deepfake manipulation techniques. This draws our attention towards learning more subtle, local, and discriminative features for deepfake detection. In this paper, we formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it. Specifically, our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection. Through extensive experimental validation, we demonstrate the superiority of our method over the published research in cross-dataset and cross-manipulation generalization of deepfake detectors for the majority of the experimental scenarios.
Abstract:Published academic research and media articles suggest face recognition is biased across demographics. Specifically, unequal performance is obtained for women, dark-skinned people, and older adults. However, these published studies have examined the bias of facial recognition in the visible spectrum (VIS). Factors such as facial makeup, facial hair, skin color, and illumination variation have been attributed to the bias of this technology at the VIS. The near-infrared (NIR) spectrum offers an advantage over the VIS in terms of robustness to factors such as illumination changes, facial makeup, and skin color. Therefore, it is worthwhile to investigate the bias of facial recognition at the near-infrared spectrum (NIR). This first study investigates the bias of the face recognition systems at the NIR spectrum. To this aim, two popular NIR facial image datasets namely, CASIA-Face-Africa and Notre-Dame-NIVL consisting of African and Caucasian subjects, respectively, are used to investigate the bias of facial recognition technology across gender and race. Interestingly, experimental results suggest equitable face recognition performance across gender and race at the NIR spectrum.
Abstract:Published studies have suggested the bias of automated face-based gender classification algorithms across gender-race groups. Specifically, unequal accuracy rates were obtained for women and dark-skinned people. To mitigate the bias of gender classifiers, the vision community has developed several strategies. However, the efficacy of these mitigation strategies is demonstrated for a limited number of races mostly, Caucasian and African-American. Further, these strategies often offer a trade-off between bias and classification accuracy. To further advance the state-of-the-art, we leverage the power of generative views, structured learning, and evidential learning towards mitigating gender classification bias. We demonstrate the superiority of our bias mitigation strategy in improving classification accuracy and reducing bias across gender-racial groups through extensive experimental validation, resulting in state-of-the-art performance in intra- and cross dataset evaluations.