Abstract:Currently, the screening of Wagner grades of diabetic feet (DF) still relies on professional podiatrists. However, in less-developed countries, podiatrists are scarce, which led to the majority of undiagnosed patients. In this study, we proposed the real-time detection and location method for Wagner grades of DF based on refinements on YOLOv3. We collected 2,688 data samples and implemented several methods, such as a visual coherent image mixup, label smoothing, and training scheduler revamping, based on the ablation study. The experimental results suggested that the refinements on YOLOv3 achieved an accuracy of 91.95% and the inference speed of a single picture reaches 31ms with the NVIDIA Tesla V100. To test the performance of the model on a smartphone, we deployed the refinements on YOLOv3 models on an Android 9 system smartphone. This work has the potential to lead to a paradigm shift for clinical treatment of the DF in the future, to provide an effective healthcare solution for DF tissue analysis and healing status.
Abstract:Discriminative correlation filters show excellent performance in object tracking. However, in complex scenes, the apparent characteristics of the tracked target are variable, which makes it easy to pollute the model and cause the model drift. In this paper, considering that the secondary peak has a greater impact on the model update, we propose a method for detecting the primary and secondary peaks of the response map. Secondly, a novel confidence function which uses the adaptive update discriminant mechanism is proposed, which yield good robustness. Thirdly, we propose a robust tracker with correlation filters, which uses hand-crafted features and can improve model drift in complex scenes. Finally, in order to cope with the current trackers' multi-feature response merge, we propose a simple exponential adaptive merge approach. Extensive experiments are performed on OTB2013, OTB100 and TC128 datasets. Our approach performs superiorly against several state-of-the-art trackers while runs at speed in real time.