Abstract:Natural Language Processing (NLP) operations, such as semantic sentiment analysis and text synthesis, may often impair users' privacy and demand significant on device computational resources. Centralized learning (CL) on the edge offers an alternative energy-efficient approach, yet requires the collection of raw information, which affects the user's privacy. While Federated learning (FL) preserves privacy, it requires high computational energy on board tiny user devices. We introduce split learning (SL) as an energy-efficient alternative, privacy-preserving tiny machine learning (TinyML) scheme and compare it to FL and CL in the presence of Rayleigh fading and additive noise. Our results show that SL reduces processing power and CO2 emissions while maintaining high accuracy, whereas FL offers a balanced compromise between efficiency and privacy. Hence, this study provides insights into deploying energy-efficient, privacy-preserving NLP models on edge devices.
Abstract:Generative artificial intelligence (GenAI) has ushered in a new era for storytellers, providing a powerful tool to ignite creativity and explore uncharted narrative territories. As technology continues to advance, the synergy between human creativity and AI-generated content holds the potential to redefine the landscape of storytelling. In this work, we propose SARD, a drag-and-drop visual interface for generating a multi-chapter story using large language models. Our evaluation of the usability of SARD and its creativity support shows that while node-based visualization of the narrative may help writers build a mental model, it exerts unnecessary mental overhead to the writer and becomes a source of distraction as the story becomes more elaborated. We also found that AI generates stories that are less lexically diverse, irrespective of the complexity of the story. We identified some patterns and limitations of our tool that can guide the development of future human-AI co-writing tools.