Abstract:Using heterogeneous depth cameras and 3D scanners in 3D face verification causes variations in the resolution of the 3D point clouds. To solve this issue, previous studies use 3D registration techniques. Out of these proposed techniques, detecting points of correspondence is proven to be an efficient method given that the data belongs to the same individual. However, if the data belongs to different persons, the registration algorithms can convert the 3D point cloud of one person to another, destroying the distinguishing features between the two point clouds. Another issue regarding the storage size of the point clouds. That is, if the captured depth image contains around 50 thousand points in the cloud for a single pose for one individual, then the storage size of the entire dataset will be in order of giga if not tera bytes. With these motivations, this work introduces a new technique for 3D point clouds generation using a neural modeling system to handle the differences caused by heterogeneous depth cameras, and to generate a new face canonical compact representation. The proposed system reduces the stored 3D dataset size, and if required, provides an accurate dataset regeneration. Furthermore, the system generates neural models for all gallery point clouds and stores these models to represent the faces in the recognition or verification processes. For the probe cloud to be verified, a new model is generated specifically for that particular cloud and is matched against pre-stored gallery model presentations to identify the query cloud. This work also introduces the utilization of Siamese deep neural network in 3D face verification using generated model representations as raw data for the deep network, and shows that the accuracy of the trained network is comparable all published results on Bosphorus dataset.
Abstract:Majority of the face recognition algorithms use query faces captured from uncontrolled, in the wild, environment. Often caused by the cameras limited capabilities, it is common for these captured facial images to be blurred or low resolution. Super resolution algorithms are therefore crucial in improving the resolution of such images especially when the image size is small requiring enlargement. This paper aims to demonstrate the effect of one of the state-of-the-art algorithms in the field of image super resolution. To demonstrate the functionality of the algorithm, various before and after 3D face alignment cases are provided using the images from the Labeled Faces in the Wild (lfw). Resulting images are subject to testing on a closed set face recognition protocol using unsupervised algorithms with high dimension extracted features. The inclusion of super resolution algorithm resulted in significant improved recognition rate over recently reported results obtained from unsupervised algorithms.
Abstract:AdaBoost is an important algorithm in machine learning and is being widely used in object detection. AdaBoost works by iteratively selecting the best amongst weak classifiers, and then combines several weak classifiers to obtain a strong classifier. Even though AdaBoost has proven to be very effective, its learning execution time can be quite large depending upon the application e.g., in face detection, the learning time can be several days. Due to its increasing use in computer vision applications, the learning time needs to be drastically reduced so that an adaptive near real time object detection system can be incorporated. In this paper, we develop a hybrid parallel and distributed AdaBoost algorithm that exploits the multiple cores in a CPU via light weight threads, and also uses multiple machines via a web service software architecture to achieve high scalability. We present a novel hierarchical web services based distributed architecture and achieve nearly linear speedup up to the number of processors available to us. In comparison with the previously published work, which used a single level master-slave parallel and distributed implementation [1] and only achieved a speedup of 2.66 on four nodes, we achieve a speedup of 95.1 on 31 workstations each having a quad-core processor, resulting in a learning time of only 4.8 seconds per feature.