Abstract:Recent advancements in diffusion models have enabled a wide range of works exploiting their ability to generate high-volume, high-quality data for use in various downstream tasks. One subclass of such models, dubbed Layout-to-Image Synthesis (LIS), learns to generate images conditioned on a spatial layout (bounding boxes, masks, poses, etc.) and has shown a promising ability to generate realistic images, albeit with limited layout-adherence. Moreover, the question of how to effectively transfer those models for scalable augmentation of few-shot detection data remains unanswered. Thus, we propose a collaborative framework employing a Large Language Model (LLM) and an LIS model for enhancing few-shot detection beyond state-of-the-art generative augmentation approaches. We leverage LLM's reasoning ability to extrapolate the spatial prior of the annotation space by generating new bounding boxes given only a few example annotations. Additionally, we introduce our novel layout-aware CLIP score for sample ranking, enabling tight coupling between generated layouts and images. Significant improvements on COCO few-shot benchmarks are observed. With our approach, a YOLOX-S baseline is boosted by more than 140%, 50%, 35% in mAP on the COCO 5-,10-, and 30-shot settings, respectively.
Abstract:Recent studies showcase the competitive accuracy of Vision Transformers (ViTs) in relation to Convolutional Neural Networks (CNNs), along with their remarkable robustness. However, ViTs demand a large amount of data to achieve adequate performance, which makes their application to small datasets challenging, falling behind CNNs. To overcome this, we propose GenFormer, a data augmentation strategy utilizing generated images, thereby improving transformer accuracy and robustness on small-scale image classification tasks. In our comprehensive evaluation we propose Tiny ImageNetV2, -R, and -A as new test set variants of Tiny ImageNet by transferring established ImageNet generalization and robustness benchmarks to the small-scale data domain. Similarly, we introduce MedMNIST-C and EuroSAT-C as corrupted test set variants of established fine-grained datasets in the medical and aerial domain. Through a series of experiments conducted on small datasets of various domains, including Tiny ImageNet, CIFAR, EuroSAT and MedMNIST datasets, we demonstrate the synergistic power of our method, in particular when combined with common train and test time augmentations, knowledge distillation, and architectural design choices. Additionally, we prove the effectiveness of our approach under challenging conditions with limited training data, demonstrating significant improvements in both accuracy and robustness, bridging the gap between CNNs and ViTs in the small-scale dataset domain.