Abstract:This study introduces a refined Flooding Injection Rate-adjustable Denial-of-Service (DoS) model for Network-on-Chips (NoCs) and more importantly presents DL2Fence, a novel framework utilizing Deep Learning (DL) and Frame Fusion (2F) for DoS detection and localization. Two Convolutional Neural Networks models for classification and segmentation were developed to detect and localize DoS respectively. It achieves detection and localization accuracies of 95.8\% and 91.7\%, and precision rates of 98.5\% and 99.3\% in a 16x16 mesh NoC. The framework's hardware overhead notably decreases by 76.3\% when scaling from 8x8 to 16x16 NoCs, and it requires 42.4\% less hardware compared to state-of-the-arts. This advancement demonstrates DL2Fence's effectiveness in balancing outstanding detection performance in large-scale NoCs with extremely low hardware overhead.
Abstract:Control-Flow Attestation (CFA) is a security service that allows an entity (verifier) to verify the integrity of code execution on a remote computer system (prover). Existing CFA schemes suffer from impractical assumptions, such as requiring access to the prover's internal state (e.g., memory or code), the complete Control-Flow Graph (CFG) of the prover's software, large sets of measurements, or tailor-made hardware. Moreover, current CFA schemes are inadequate for attesting embedded systems due to their high computational overhead and resource usage. In this paper, we overcome the limitations of existing CFA schemes for embedded devices by introducing RAGE, a novel, lightweight CFA approach with minimal requirements. RAGE can detect Code Reuse Attacks (CRA), including control- and non-control-data attacks. It efficiently extracts features from one execution trace and leverages Unsupervised Graph Neural Networks (GNNs) to identify deviations from benign executions. The core intuition behind RAGE is to exploit the correspondence between execution trace, execution graph, and execution embeddings to eliminate the unrealistic requirement of having access to a complete CFG. We evaluate RAGE on embedded benchmarks and demonstrate that (i) it detects 40 real-world attacks on embedded software; (ii) Further, we stress our scheme with synthetic return-oriented programming (ROP) and data-oriented programming (DOP) attacks on the real-world embedded software benchmark Embench, achieving 98.03% (ROP) and 91.01% (DOP) F1-Score while maintaining a low False Positive Rate of 3.19%; (iii) Additionally, we evaluate RAGE on OpenSSL, used by millions of devices and achieve 97.49% and 84.42% F1-Score for ROP and DOP attack detection, with an FPR of 5.47%.