Abstract:Sepsis is a life-threatening condition which requires rapid diagnosis and treatment. Traditional microbiological methods are time-consuming and expensive. In response to these challenges, deep learning algorithms were developed to identify 14 bacteria species and 3 yeast-like fungi from microscopic images of Gram-stained smears of positive blood samples from sepsis patients. A total of 16,637 Gram-stained microscopic images were used in the study. The analysis used the Cellpose 3 model for segmentation and Attention-based Deep Multiple Instance Learning for classification. Our model achieved an accuracy of 77.15% for bacteria and 71.39% for fungi, with ROC AUC of 0.97 and 0.88, respectively. The highest values, reaching up to 96.2%, were obtained for Cutibacterium acnes, Enterococcus faecium, Stenotrophomonas maltophilia and Nakaseomyces glabratus. Classification difficulties were observed in closely related species, such as Staphylococcus hominis and Staphylococcus haemolyticus, due to morphological similarity, and within Candida albicans due to high morphotic diversity. The study confirms the potential of our model for microbial classification, but it also indicates the need for further optimisation and expansion of the training data set. In the future, this technology could support microbial diagnosis, reducing diagnostic time and improving the effectiveness of sepsis treatment due to its simplicity and accessibility. Part of the results presented in this publication was covered by a patent application at the European Patent Office EP24461637.1 "A computer implemented method for identifying a microorganism in a blood and a data processing system therefor".
Abstract:Preliminary diagnosis of fungal infections can rely on microscopic examination. However, in many cases, it does not allow unambiguous identification of the species by microbiologist due to their visual similarity. Therefore, it is usually necessary to use additional biochemical tests. That involves additional costs and extends the identification process up to 10 days. Such a delay in the implementation of targeted therapy may be grave in consequence as the mortality rate for immunosuppressed patients is high. In this paper, we apply a machine learning approach based on deep neural networks and Fisher Vector (advanced bag-of-words method) to classify microscopic images of various fungi species. Our approach has the potential to make the last stage of biochemical identification redundant, shortening the identification process by 2-3 days, and reducing the cost of the diagnosis.
Abstract:Diagnosis of fungal infections can rely on microscopic examination, however, in many cases, it does not allow unambiguous identification of the species due to their visual similarity. Therefore, it is usually necessary to use additional biochemical tests. That involves additional costs and extends the identification process up to 10 days. Such a delay in the implementation of targeted treatment is grave in consequences as the mortality rate for immunosuppressed patients is high. In this paper, we apply machine learning approach based on deep learning and bag-of-words to classify microscopic images of various fungi species. Our approach makes the last stage of biochemical identification redundant, shortening the identification process by 2-3 days and reducing the cost of the diagnostic examination.