Abstract:Large Language Models (LLMs) have transformed numerous domains by providing advanced capabilities in natural language understanding, generation, and reasoning. Despite their groundbreaking applications across industries such as research, healthcare, and creative media, their rapid adoption raises critical concerns regarding sustainability. This survey paper comprehensively examines the environmental, economic, and computational challenges associated with LLMs, focusing on energy consumption, carbon emissions, and resource utilization in data centers. By synthesizing insights from existing literature, this work explores strategies such as resource-efficient training, sustainable deployment practices, and lifecycle assessments to mitigate the environmental impacts of LLMs. Key areas of emphasis include energy optimization, renewable energy integration, and balancing performance with sustainability. The findings aim to guide researchers, practitioners, and policymakers in developing actionable strategies for sustainable AI systems, fostering a responsible and environmentally conscious future for artificial intelligence.
Abstract:Text-to-SQL systems facilitate smooth interaction with databases by translating natural language queries into Structured Query Language (SQL), bridging the gap between non-technical users and complex database management systems. This survey provides a comprehensive overview of the evolution of AI-driven text-to-SQL systems, highlighting their foundational components, advancements in large language model (LLM) architectures, and the critical role of datasets such as Spider, WikiSQL, and CoSQL in driving progress. We examine the applications of text-to-SQL in domains like healthcare, education, and finance, emphasizing their transformative potential for improving data accessibility. Additionally, we analyze persistent challenges, including domain generalization, query optimization, support for multi-turn conversational interactions, and the limited availability of datasets tailored for NoSQL databases and dynamic real-world scenarios. To address these challenges, we outline future research directions, such as extending text-to-SQL capabilities to support NoSQL databases, designing datasets for dynamic multi-turn interactions, and optimizing systems for real-world scalability and robustness. By surveying current advancements and identifying key gaps, this paper aims to guide the next generation of research and applications in LLM-based text-to-SQL systems.
Abstract:Generative AI is reshaping the media landscape, enabling unprecedented capabilities in video creation, personalization, and scalability. This paper presents a comprehensive SWOT analysis of Metas Movie Gen, a cutting-edge generative AI foundation model designed to produce 1080p HD videos with synchronized audio from simple text prompts. We explore its strengths, including high-resolution video generation, precise editing, and seamless audio integration, which make it a transformative tool across industries such as filmmaking, advertising, and education. However, the analysis also addresses limitations, such as constraints on video length and potential biases in generated content, which pose challenges for broader adoption. In addition, we examine the evolving regulatory and ethical considerations surrounding generative AI, focusing on issues like content authenticity, cultural representation, and responsible use. Through comparative insights with leading models like DALL-E and Google Imagen, this paper highlights Movie Gens unique features, such as video personalization and multimodal synthesis, while identifying opportunities for innovation and areas requiring further research. Our findings provide actionable insights for stakeholders, emphasizing both the opportunities and challenges of deploying generative AI in media production. This work aims to guide future advancements in generative AI, ensuring scalability, quality, and ethical integrity in this rapidly evolving field.
Abstract:The application of artificial intelligence (AI) in civil engineering presents a transformative approach to enhancing design quality and safety. This paper investigates the potential of the advanced LLM GPT4 Turbo vision model in detecting architectural flaws during the design phase, with a specific focus on identifying missing doors and windows. The study evaluates the model's performance through metrics such as precision, recall, and F1 score, demonstrating AI's effectiveness in accurately detecting flaws compared to human-verified data. Additionally, the research explores AI's broader capabilities, including identifying load-bearing issues, material weaknesses, and ensuring compliance with building codes. The findings highlight how AI can significantly improve design accuracy, reduce costly revisions, and support sustainable practices, ultimately revolutionizing the civil engineering field by ensuring safer, more efficient, and aesthetically optimized structures.
Abstract:In this paper, we conduct a comprehensive SWOT analysis of prompt engineering techniques within the realm of Large Language Models (LLMs). Emphasizing linguistic principles, we examine various techniques to identify their strengths, weaknesses, opportunities, and threats. Our findings provide insights into enhancing AI interactions and improving language model comprehension of human prompts. The analysis covers techniques including template-based approaches and fine-tuning, addressing the problems and challenges associated with each. The conclusion offers future research directions aimed at advancing the effectiveness of prompt engineering in optimizing human-machine communication.
Abstract:The recent swift development of LLMs like GPT-4, Gemini, and GPT-3.5 offers a transformative opportunity in medicine and healthcare, especially in digital diagnostics. This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses, and it demonstrates how each of these models could significantly increase diagnostic accuracy and efficiency. Through a series of diagnostic prompts based on symptoms from medical databases, GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data. Meanwhile, Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model when physicians are trying to make high-risk diagnoses. GPT-3.5, though slightly less advanced, is a good tool for medical diagnostics. This study highlights the need to study LLMs for healthcare and clinical practices with more care and attention, ensuring that any system utilizing LLMs promotes patient privacy and complies with health information privacy laws such as HIPAA compliance, as well as the social consequences that affect the varied individuals in complex healthcare contexts. This study marks the start of a larger future effort to study the various ways in which assigning ethical concerns to LLMs task of learning from human biases could unearth new ways to apply AI in complex medical settings.
Abstract:Text-to-Image and Text-to-Video AI generation models are revolutionary technologies that use deep learning and natural language processing (NLP) techniques to create images and videos from textual descriptions. This paper investigates cutting-edge approaches in the discipline of Text-to-Image and Text-to-Video AI generations. The survey provides an overview of the existing literature as well as an analysis of the approaches used in various studies. It covers data preprocessing techniques, neural network types, and evaluation metrics used in the field. In addition, the paper discusses the challenges and limitations of Text-to-Image and Text-to-Video AI generations, as well as future research directions. Overall, these models have promising potential for a wide range of applications such as video production, content creation, and digital marketing.
Abstract:The integration of artificial intelligence (AI) into education has the potential to transform the way we learn and teach. In this paper, we examine the current state of AI in education and explore the potential benefits and challenges of incorporating this technology into the classroom. The approaches currently available for AI education often present students with experiences only focusing on discrete computer science concepts agnostic to a larger curriculum. However, teaching AI must not be siloed or interdisciplinary. Rather, AI instruction ought to be transdisciplinary, including connections to the broad curriculum and community in which students are learning. This paper delves into the AI program currently in development for Neom Community School and the larger Education, Research, and Innovation Sector in Neom, Saudi Arabia s new megacity under development. In this program, AI is both taught as a subject and to learn other subjects within the curriculum through the school systems International Baccalaureate (IB) approach, which deploys learning through Units of Inquiry. This approach to education connects subjects across a curriculum under one major guiding question at a time. The proposed method offers a meaningful approach to introducing AI to students throughout these Units of Inquiry, as it shifts AI from a subject that students like or not like to a subject that is taught throughout the curriculum.
Abstract:Approximate nearest neighbor search (ANNS) is a fundamental building block in information retrieval with graph-based indices being the current state-of-the-art and widely used in the industry. Recent advances in graph-based indices have made it possible to index and search billion-point datasets with high recall and millisecond-level latency on a single commodity machine with an SSD. However, existing graph algorithms for ANNS support only static indices that cannot reflect real-time changes to the corpus required by many key real-world scenarios (e.g. index of sentences in documents, email, or a news index). To overcome this drawback, the current industry practice for manifesting updates into such indices is to periodically re-build these indices, which can be prohibitively expensive. In this paper, we present the first graph-based ANNS index that reflects corpus updates into the index in real-time without compromising on search performance. Using update rules for this index, we design FreshDiskANN, a system that can index over a billion points on a workstation with an SSD and limited memory, and support thousands of concurrent real-time inserts, deletes and searches per second each, while retaining $>95\%$ 5-recall@5. This represents a 5-10x reduction in the cost of maintaining freshness in indices when compared to existing methods.