Abstract:The application of artificial intelligence (AI) in civil engineering presents a transformative approach to enhancing design quality and safety. This paper investigates the potential of the advanced LLM GPT4 Turbo vision model in detecting architectural flaws during the design phase, with a specific focus on identifying missing doors and windows. The study evaluates the model's performance through metrics such as precision, recall, and F1 score, demonstrating AI's effectiveness in accurately detecting flaws compared to human-verified data. Additionally, the research explores AI's broader capabilities, including identifying load-bearing issues, material weaknesses, and ensuring compliance with building codes. The findings highlight how AI can significantly improve design accuracy, reduce costly revisions, and support sustainable practices, ultimately revolutionizing the civil engineering field by ensuring safer, more efficient, and aesthetically optimized structures.
Abstract:In this paper, we conduct a comprehensive SWOT analysis of prompt engineering techniques within the realm of Large Language Models (LLMs). Emphasizing linguistic principles, we examine various techniques to identify their strengths, weaknesses, opportunities, and threats. Our findings provide insights into enhancing AI interactions and improving language model comprehension of human prompts. The analysis covers techniques including template-based approaches and fine-tuning, addressing the problems and challenges associated with each. The conclusion offers future research directions aimed at advancing the effectiveness of prompt engineering in optimizing human-machine communication.