Abstract:The application of artificial intelligence (AI) in civil engineering presents a transformative approach to enhancing design quality and safety. This paper investigates the potential of the advanced LLM GPT4 Turbo vision model in detecting architectural flaws during the design phase, with a specific focus on identifying missing doors and windows. The study evaluates the model's performance through metrics such as precision, recall, and F1 score, demonstrating AI's effectiveness in accurately detecting flaws compared to human-verified data. Additionally, the research explores AI's broader capabilities, including identifying load-bearing issues, material weaknesses, and ensuring compliance with building codes. The findings highlight how AI can significantly improve design accuracy, reduce costly revisions, and support sustainable practices, ultimately revolutionizing the civil engineering field by ensuring safer, more efficient, and aesthetically optimized structures.
Abstract:In this paper, we conduct a comprehensive SWOT analysis of prompt engineering techniques within the realm of Large Language Models (LLMs). Emphasizing linguistic principles, we examine various techniques to identify their strengths, weaknesses, opportunities, and threats. Our findings provide insights into enhancing AI interactions and improving language model comprehension of human prompts. The analysis covers techniques including template-based approaches and fine-tuning, addressing the problems and challenges associated with each. The conclusion offers future research directions aimed at advancing the effectiveness of prompt engineering in optimizing human-machine communication.
Abstract:The recent swift development of LLMs like GPT-4, Gemini, and GPT-3.5 offers a transformative opportunity in medicine and healthcare, especially in digital diagnostics. This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses, and it demonstrates how each of these models could significantly increase diagnostic accuracy and efficiency. Through a series of diagnostic prompts based on symptoms from medical databases, GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data. Meanwhile, Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model when physicians are trying to make high-risk diagnoses. GPT-3.5, though slightly less advanced, is a good tool for medical diagnostics. This study highlights the need to study LLMs for healthcare and clinical practices with more care and attention, ensuring that any system utilizing LLMs promotes patient privacy and complies with health information privacy laws such as HIPAA compliance, as well as the social consequences that affect the varied individuals in complex healthcare contexts. This study marks the start of a larger future effort to study the various ways in which assigning ethical concerns to LLMs task of learning from human biases could unearth new ways to apply AI in complex medical settings.