Abstract:The availability of a vast array of research papers in any area of study, necessitates the need of automated summarisation systems that can present the key research conducted and their corresponding findings. Scientific paper summarisation is a challenging task for various reasons including token length limits in modern transformer models and corresponding memory and compute requirements for long text. A significant amount of work has been conducted in this area, with approaches that modify the attention mechanisms of existing transformer models and others that utilise discourse information to capture long range dependencies in research papers. In this paper, we propose a hybrid methodology for research paper summarisation which incorporates an extractive and abstractive approach. We use the extractive approach to capture the key findings of research, and pair it with the introduction of the paper which captures the motivation for research. We use two models based on unsupervised learning for the extraction stage and two transformer language models, resulting in four combinations for our hybrid approach. The performances of the models are evaluated on three metrics and we present our findings in this paper. We find that using certain combinations of hyper parameters, it is possible for automated summarisation systems to exceed the abstractiveness of summaries written by humans. Finally, we state our future scope of research in extending this methodology to summarisation of generalised long documents.
Abstract:Haemorrhaging of the brain is the leading cause of death in people between the ages of 15 and 24 and the third leading cause of death in people older than that. Computed tomography (CT) is an imaging modality used to diagnose neurological emergencies, including stroke and traumatic brain injury. Recent advances in Deep Learning and Image Processing have utilised different modalities like CT scans to help automate the detection and segmentation of brain haemorrhage occurrences. In this paper, we propose a novel implementation of an architecture consisting of traditional Convolutional Neural Networks(CNN) along with Graph Neural Networks(GNN) to produce a holistic model for the task of brain haemorrhage segmentation.GNNs work on the principle of neighbourhood aggregation thus providing a reliable estimate of global structures present in images. GNNs work with few layers thus in turn requiring fewer parameters to work with. We were able to achieve a dice coefficient score of around 0.81 with limited data with our implementation.