Abstract:Federated learning enables multiple actors to collaboratively train models without sharing private data. This unlocks the potential for scaling machine learning to diverse applications. Existing algorithms for this task are well-justified when clients and the intended target domain share the same distribution of features and labels, but this assumption is often violated in real-world scenarios. One common violation is label shift, where the label distributions differ across clients or between clients and the target domain, which can significantly degrade model performance. To address this problem, we propose FedPALS, a novel model aggregation scheme that adapts to label shifts by leveraging knowledge of the target label distribution at the central server. Our approach ensures unbiased updates under stochastic gradient descent, ensuring robust generalization across clients with diverse, label-shifted data. Extensive experiments on image classification demonstrate that FedPALS consistently outperforms standard baselines by aligning model aggregation with the target domain. Our findings reveal that conventional federated learning methods suffer severely in cases of extreme client sparsity, highlighting the critical need for target-aware aggregation. FedPALS offers a principled and practical solution to mitigate label distribution mismatch, ensuring models trained in federated settings can generalize effectively to label-shifted target domains.
Abstract:Successful unsupervised domain adaptation (UDA) is guaranteed only under strong assumptions such as covariate shift and overlap between input domains. The latter is often violated in high-dimensional applications such as image classification which, despite this challenge, continues to serve as inspiration and benchmark for algorithm development. In this work, we show that access to side information about examples from the source and target domains can help relax these assumptions and increase sample efficiency in learning, at the cost of collecting a richer variable set. We call this domain adaptation by learning using privileged information (DALUPI). Tailored for this task, we propose a simple two-stage learning algorithm inspired by our analysis and a practical end-to-end algorithm for multi-label image classification. In a suite of experiments, including an application to medical image analysis, we demonstrate that incorporating privileged information in learning can reduce errors in domain transfer compared to classical learning.
Abstract:Understanding generalization is crucial to confidently engineer and deploy machine learning models, especially when deployment implies a shift in the data domain. For such domain adaptation problems, we seek generalization bounds which are tractably computable and tight. If these desiderata can be reached, the bounds can serve as guarantees for adequate performance in deployment. However, in applications where deep neural networks are the models of choice, deriving results which fulfill these remains an unresolved challenge; most existing bounds are either vacuous or has non-estimable terms, even in favorable conditions. In this work, we evaluate existing bounds from the literature with potential to satisfy our desiderata on domain adaptation image classification tasks, where deep neural networks are preferred. We find that all bounds are vacuous and that sample generalization terms account for much of the observed looseness, especially when these terms interact with measures of domain shift. To overcome this and arrive at the tightest possible results, we combine each bound with recent data-dependent PAC-Bayes analysis, greatly improving the guarantees. We find that, when domain overlap can be assumed, a simple importance weighting extension of previous work provides the tightest estimable bound. Finally, we study which terms dominate the bounds and identify possible directions for further improvement.