Abstract:We study the algorithmic task of finding large independent sets in Erdos-Renyi $r$-uniform hypergraphs on $n$ vertices having average degree $d$. Krivelevich and Sudakov showed that the maximum independent set has density $\left(\frac{r\log d}{(r-1)d}\right)^{1/(r-1)}$. We show that the class of low-degree polynomial algorithms can find independent sets of density $\left(\frac{\log d}{(r-1)d}\right)^{1/(r-1)}$ but no larger. This extends and generalizes earlier results of Gamarnik and Sudan, Rahman and Virag, and Wein on graphs, and answers a question of Bal and Bennett. We conjecture that this statistical-computational gap holds for this problem. Additionally, we explore the universality of this gap by examining $r$-partite hypergraphs. A hypergraph $H=(V,E)$ is $r$-partite if there is a partition $V=V_1\cup\cdots\cup V_r$ such that each edge contains exactly one vertex from each set $V_i$. We consider the problem of finding large balanced independent sets (independent sets containing the same number of vertices in each partition) in random $r$-partite hypergraphs with $n$ vertices in each partition and average degree $d$. We prove that the maximum balanced independent set has density $\left(\frac{r\log d}{(r-1)d}\right)^{1/(r-1)}$ asymptotically. Furthermore, we prove an analogous low-degree computational threshold of $\left(\frac{\log d}{(r-1)d}\right)^{1/(r-1)}$. Our results recover and generalize recent work of Perkins and the second author on bipartite graphs. While the graph case has been extensively studied, this work is the first to consider statistical-computational gaps of optimization problems on random hypergraphs. Our results suggest that these gaps persist for larger uniformities as well as across many models. A somewhat surprising aspect of the gap for balanced independent sets is that the algorithm achieving the lower bound is a simple degree-1 polynomial.
Abstract:Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem that has been extensively studied in recent years. We study a hypergraph version of the problem. Let $G^r(n,p)$ denote the $r$-uniform Erd\H{o}s-R\'enyi hypergraph model with $n$ vertices and edge density $p$. We consider detecting the presence of a planted $G^r(n^\gamma, n^{-\alpha})$ subhypergraph in a $G^r(n, n^{-\beta})$ hypergraph, where $0< \alpha < \beta < r-1$ and $0 < \gamma < 1$. Focusing on tests that are degree-$n^{o(1)}$ polynomials of the entries of the adjacency tensor, we determine the threshold between the easy and hard regimes for the detection problem. More precisely, for $0 < \gamma < 1/2$, the threshold is given by $\alpha = \beta \gamma$, and for $1/2 \le \gamma < 1$, the threshold is given by $\alpha = \beta/2 + r(\gamma - 1/2)$. Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known. Our proof of low-degree hardness is based on a conditional variant of the standard low-degree likelihood calculation.
Abstract:We consider a symmetric mixture of linear regressions with random samples from the pairwise comparison design, which can be seen as a noisy version of a type of Euclidean distance geometry problem. We analyze the expectation-maximization (EM) algorithm locally around the ground truth and establish that the sequence converges linearly, providing an $\ell_\infty$-norm guarantee on the estimation error of the iterates. Furthermore, we show that the limit of the EM sequence achieves the sharp rate of estimation in the $\ell_2$-norm, matching the information-theoretically optimal constant. We also argue through simulation that convergence from a random initialization is much more delicate in this setting, and does not appear to occur in general. Our results show that the EM algorithm can exhibit several unique behaviors when the covariate distribution is suitably structured.