Abstract:Recent advances in machine learning (ML) have spotlighted the pressing need for computing architectures that bridge the gap between memory bandwidth and processing power. The advent of deep neural networks has pushed traditional Von Neumann architectures to their limits due to the high latency and energy consumption costs associated with data movement between the processor and memory for these workloads. One of the solutions to overcome this bottleneck is to perform computation within the main memory through processing-in-memory (PIM), thereby limiting data movement and the costs associated with it. However, DRAM-based PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks and the need for frequent refresh operations. In this work, we introduce OPIMA, a PIM-based ML accelerator, architected within an optical main memory. OPIMA has been designed to leverage the inherent massive parallelism within main memory while performing high-speed, low-energy optical computation to accelerate ML models based on convolutional neural networks. We present a comprehensive analysis of OPIMA to guide design choices and operational mechanisms. Additionally, we evaluate the performance and energy consumption of OPIMA, comparing it with conventional electronic computing systems and emerging photonic PIM architectures. The experimental results show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
Abstract:Object detectors used in autonomous vehicles can have high memory and computational overheads. In this paper, we introduce a novel semi-structured pruning framework called R-TOSS that overcomes the shortcomings of state-of-the-art model pruning techniques. Experimental results on the JetsonTX2 show that R-TOSS has a compression rate of 4.4x on the YOLOv5 object detector with a 2.15x speedup in inference time and 57.01% decrease in energy usage. R-TOSS also enables 2.89x compression on RetinaNet with a 1.86x speedup in inference time and 56.31% decrease in energy usage. We also demonstrate significant improvements compared to various state-of-the-art pruning techniques.
Abstract:Object detection is a computer vision task that has become an integral part of many consumer applications today such as surveillance and security systems, mobile text recognition, and diagnosing diseases from MRI/CT scans. Object detection is also one of the critical components to support autonomous driving. Autonomous vehicles rely on the perception of their surroundings to ensure safe and robust driving performance. This perception system uses object detection algorithms to accurately determine objects such as pedestrians, vehicles, traffic signs, and barriers in the vehicle's vicinity. Deep learning-based object detectors play a vital role in finding and localizing these objects in real-time. This article discusses the state-of-the-art in object detectors and open challenges for their integration into autonomous vehicles.