Abstract:For many years, transformer-based pre-trained models with Multi-layer Perceptron (MLP) heads have been the standard for text classification tasks. However, the fixed non-linear functions employed by MLPs often fall short of capturing the intricacies of the contextualized embeddings produced by pre-trained encoders. Furthermore, MLPs usually require a significant number of training parameters, which can be computationally expensive. In this work, we introduce FourierKAN (FR-KAN), a variant of the promising MLP alternative called Kolmogorov-Arnold Networks (KANs), as classification heads for transformer-based encoders. Our studies reveal an average increase of 10% in accuracy and 11% in F1-score when incorporating FR-KAN heads instead of traditional MLP heads for several transformer-based pre-trained models across multiple text classification tasks. Beyond improving model accuracy, FR-KAN heads train faster and require fewer parameters. Our research opens new grounds for broader applications of KAN across several Natural Language Processing (NLP) tasks.
Abstract:This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis. As the largest and most robust clickbait corpus in Bangla to date, this dataset provides significant value for natural language processing and data science researchers seeking to advance modeling of clickbait phenomena in low-resource languages. Its multi-modal nature allows for comprehensive analyses of clickbait across content, user interactions, and linguistic dimensions to develop more sophisticated detection methods with cross-linguistic applications.