Abstract:With the involvement of multiple programming languages in modern software development, cross-lingual code clone detection has gained traction with the software engineering community. Numerous studies have explored this topic, proposing various promising approaches. Inspired by the significant advances in machine learning in recent years, particularly Large Language Models (LLMs), which have demonstrated their ability to tackle various tasks, this paper revisits cross-lingual code clone detection. We investigate the capabilities of four (04) LLMs and eight (08) prompts for the identification of cross-lingual code clones. Additionally, we evaluate a pre-trained embedding model to assess the effectiveness of the generated representations for classifying clone and non-clone pairs. Both studies (based on LLMs and Embedding models) are evaluated using two widely used cross-lingual datasets, XLCoST and CodeNet. Our results show that LLMs can achieve high F1 scores, up to 0.98, for straightforward programming examples (e.g., from XLCoST). However, they not only perform less well on programs associated with complex programming challenges but also do not necessarily understand the meaning of code clones in a cross-lingual setting. We show that embedding models used to represent code fragments from different programming languages in the same representation space enable the training of a basic classifier that outperforms all LLMs by ~2 and ~24 percentage points on the XLCoST and CodeNet datasets, respectively. This finding suggests that, despite the apparent capabilities of LLMs, embeddings provided by embedding models offer suitable representations to achieve state-of-the-art performance in cross-lingual code clone detection.
Abstract:Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale "vector" images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain.